cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113274 Record gaps between twin primes.

Original entry on oeis.org

2, 6, 12, 18, 30, 36, 72, 150, 168, 210, 282, 372, 498, 630, 924, 930, 1008, 1452, 1512, 1530, 1722, 1902, 2190, 2256, 2832, 2868, 3012, 3102, 3180, 3480, 3804, 4770, 5292, 6030, 6282, 6474, 6552, 6648, 7050, 7980, 8040, 8994, 9312, 9318, 10200, 10338, 10668
Offset: 1

Views

Author

Bernardo Boncompagni, Oct 21 2005

Keywords

Comments

a(n) mod 6 = 0 for each n>1.

Examples

			The first twin primes are 3,5 and 5,7 so a(0)=5-3=2. The following pair is 11,13 so a(1)=11-5=6. The following pair is 17,19 so 6 remains the record and no terms are added.
		

Crossrefs

The smallest primes originating the sequence are given in A113275. Cf. A008407, A005250, A002386.

Programs

  • Mathematica
    NextLowerTwinPrim[n_] := Block[{k = n + 6}, While[ !PrimeQ[k] || !PrimeQ[k + 2], k+=6]; k]; p = 5; r = 2; t = {2}; Do[ q = NextLowerTwinPrim[p]; If[q > r + p, AppendTo[t, q - p]; Print[{p, q - p}]; r = q - p]; p = q, {n, 10^9}]; t (* Robert G. Wilson v, Oct 22 2005 *)
    DeleteDuplicates[Differences[Select[Partition[Prime[Range[10^7]],2,1],#[[2]]-#[[1]] == 2&][[All,2]]],GreaterEqual] (* The program generates the first 27 terms of the sequence. *) (* Harvey P. Dale, Dec 31 2022 *)

Formula

a(n) = A036063(n) + 2.
a(n) = A036062(n) - A113275(n).
From Alexei Kourbatov, Dec 29 2011: (Start)
(1) Upper bound: gaps between twin primes are smaller than 0.76*(log p)^3, where p is the prime at the end of the gap.
(2) Estimate for the actual size of the maximal gap that ends at p: maximal gap = a(log(p/a)-1.2), where a = 0.76*(log p)^2 is the average gap between twin primes near p, as predicted by the Hardy-Littlewood k-tuple conjecture.
Formulas (1) and (2) are asymptotically equal as p tends to infinity. However, (1) yields values greater than all known gaps, while (2) yields "good guesses" that may be either above or below the actual size of known maximal gaps.
Both formulas (1) and (2) are derived from the Hardy-Littlewood k-tuple conjecture via probability-based heuristics relating the expected maximal gap size to the average gap. Neither of the formulas has a rigorous proof (the k-tuple conjecture itself has no formal proof either). In both formulas, the constant ~0.76 is reciprocal to the twin prime constant 1.32032...
(End)

Extensions

More terms from Robert G. Wilson v, Oct 22 2005
Corrected terms based on A036063, cross-checked with independent computations by Carlos Rivera and Richard Fischer (linked).
Terms up to a(72) are given in Kourbatov (2013), terms up to a(75) in Oliveira e Silva website.