cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113296 Cumulative product of double factorial A006882.

Original entry on oeis.org

1, 1, 2, 6, 48, 720, 34560, 3628800, 1393459200, 1316818944000, 5056584744960000, 52563198423859200000, 2422112183371431936000000, 327312129899898454671360000000, 211155601241022491077587763200000000
Offset: 0

Views

Author

Jonathan Vos Post, Feb 18 2006

Keywords

Examples

			a(10) = 1!! * 2!! * 3!! * 4!! * 5!! * 6!! * 7!! * 8!! * 9!! * 10!!
= 1 * 2 * 3 * 8 * 15 * 48 * 105 * 384 * 945 * 3840
= 5056584744960000 = 2^23 x 3^9 x 5^4 x 7^2.
		

Crossrefs

Programs

  • Mathematica
    Table[Product[k!!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 17 2015 *)
    Table[2^((6n^2+12n+2-3(-1)^n)/24) Pi^(((-1)^n-2n-3)/8) Exp[-1/8] Glaisher^(3/2) BarnesG[(2n+7+(-1)^n)/4] BarnesG[(2n+7-(-1)^n)/4], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 11 2015 *)
    FoldList[Times,Range[0,20]!!] (* Harvey P. Dale, Oct 29 2019 *)

Formula

a(n) = Product_{k=0..n} k!!.
a(n) = n!! * a(n-1) where a(0) = 0, a(1) = 1 and n >= 2.
a(n) = n*(n-2)!! * a(n-1) where a(0) = 0, a(1) = 1 and n >= 2.
a(n) = 2^((6*n^2+12*n+2-3*(-1)^n)/24) * Pi^(((-1)^n-2*n-3)/8) * exp(-1/8) * A^(3/2) * G((2n+7+(-1)^n)/4) * G((2n+7-(-1)^n)/4), where A is the Glaisher-Kinkelin constant (A074962), G(x) is the Barnes G-function. - Vladimir Reshetnikov, Nov 11 2015
Sum_{n>=0} 1/a(n) = 1/A137989. - Amiram Eldar, Nov 09 2020
Sum_{n>=0} (-1)^n/a(n) = A137988. - Amiram Eldar, Apr 12 2021