A113305 Primes that do not divide any central trinomial coefficient, A002426.
2, 5, 11, 13, 23, 29, 31, 37, 53, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 127, 137, 139, 149, 151, 157, 163, 167, 181, 197, 211, 223, 227, 229, 239, 241, 251, 257, 263, 271, 313, 317, 331, 337, 349, 353, 359, 367, 379, 389, 397, 431, 433, 449, 461, 463, 479
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1600
- Nadav Kohen, Uniform Recurrence in the Motzkin Numbers and Related Sequences mod p, arXiv:2403.00149 [math.CO], 2024.
- Narad Rampersad and Jeffrey Shallit, Congruence properties of combinatorial sequences via Walnut and the Rowland-Yassawi-Zeilberger automaton, arXiv:2110.06244 [math.CO], 2021.
Crossrefs
Programs
-
Mathematica
nn=1000; a=b=1; t=Join[{1}, Table[c=((2n-1)b+3(n-1)a)/n; a=b; b=c; c, {n, 2, nn}]]; pLst={}; Do[p=Prime[n]; k=1; While[k
0, k++ ]; If[k==p, AppendTo[pLst, p]], {n, PrimePi[nn]}]; pLst
Comments