A113318
Numbers whose biquadrates (fourth powers) are exclusionary.
Original entry on oeis.org
2, 3, 4, 7, 8, 9, 24, 27, 28, 32, 42, 52, 53, 58, 59, 67, 89, 93, 203, 258, 284, 324, 329, 832, 843, 2673
Offset: 1
- H. Ibstedt, Solution to Problem 2623, "Exclusionary Powers", pp. 346-9, Journal of Recreational Mathematics, Vol. 32 No.4 2003-4 Baywood NY.
-
ebQ[n_]:=Max[DigitCount[n]]==1&&Intersection[IntegerDigits[n], IntegerDigits[ n^4]]=={}; Select[Range[3000],ebQ] (* Harvey P. Dale, Aug 21 2013 *)
A113952
Largest exclusionary n-th power (or 0 if no such number exists).
Original entry on oeis.org
408540845584, 449103134312, 51050010415041, 0, 606355001344, 60170087060757, 66045000696445844586496, 0, 3570467226624, 743008370688, 16777216, 0, 9012061295995008299689, 0, 1853020188851841, 0, 0, 1162261467, 1099511627776
Offset: 2
a(10)=3570467226624 because it shares no digit in common with its 10th root 18 and no number with distinct digits greater than 18 exhibits such property.
- H. Ibstedt, Solution to Problem 2623, "Exclusionary Powers", pp. 346-9 Journal of Recreational Mathematics, Vol. 32 No.4 2003-4 Baywood NY.
Showing 1-2 of 2 results.
Comments