A113319 Decimal expansion of Sum_{k>=0} 1/(k^2+1).
2, 0, 7, 6, 6, 7, 4, 0, 4, 7, 4, 6, 8, 5, 8, 1, 1, 7, 4, 1, 3, 4, 0, 5, 0, 7, 9, 4, 7, 5, 0, 0, 0, 0, 4, 9, 0, 4, 4, 5, 6, 5, 6, 2, 6, 6, 4, 0, 3, 8, 1, 6, 6, 6, 5, 5, 7, 5, 0, 6, 2, 4, 8, 4, 3, 9, 0, 1, 5, 4, 2, 4, 7, 9, 1, 8, 3, 1, 0, 0, 2, 1, 7, 4, 3, 5, 6, 5, 5, 5, 1, 7, 5, 9, 3, 9, 5, 4, 9, 1, 8, 7, 6, 5, 1
Offset: 1
Examples
2.076674047468581174134050794750000490445656266403816665575062484390...
References
- Michel Waldschmidt, Elliptic functions and transcendance, Surveys in number theory, 143-188, Dev. Math., 17, Springer, New York, 2008.
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- Wikipedia, Digamma function.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Mathematica
RealDigits[N[Im[PolyGamma[0,I]],105]][[1]] (* Vaclav Kotesovec, Oct 03 2014 *)
-
PARI
1/2+Pi/tanh(Pi)/2
-
PARI
imag(psi(I)) \\ Stanislav Sykora, Oct 03 2014
-
PARI
sumnumrat(1/(x^2+1),0) \\ Charles R Greathouse IV, Jan 20 2022
Formula
Equals 1/2 + Pi /(2*tanh(Pi)).
Equals 1+Integral_{x >= 0} sin(x)/(exp(x)-1) dx. - Robert FERREOL, Jan 12 2016.
Equals Sum_{k>=0} (-1)^(k+1)*(zeta(2*k) - 1). - Amiram Eldar, Apr 28 2025
Extensions
Offset changed from 0 to 1 by Bruno Berselli, Dec 02 2013
Comments