cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A113346 Column 0 of triangle A113345, also equals column 0 of A113350.

Original entry on oeis.org

1, 2, 5, 19, 113, 966, 10958, 156700, 2727794, 56306696, 1350043965, 36979531549, 1141573025172, 39272377323693, 1491452150268436, 62027842189908231, 2805631215820328992, 137199563717151509077, 7215932308408758314447
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2005

Keywords

Comments

A113345 is the matrix square of A113340.

Crossrefs

Cf. A113340, A113345, A113347 (column 1), A113348 (column 2), A113349 (column 3); A113350.

Programs

  • PARI
    a(n)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);(A^2)[n+1,1]

A113347 Column 1 of triangle A113345, also equals column 0 of A113350^3.

Original entry on oeis.org

1, 6, 39, 327, 3556, 48659, 812462, 16136404, 373415239, 9900007028, 296557405704, 9921937128500, 367181525916035, 14906571298831661, 659191947156441025, 31558799717042019635, 1626968083690674214906
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2005

Keywords

Comments

A113345 is the matrix square of A113340.

Crossrefs

Cf. A113340, A113345, A113346 (column 0), A113348 (column 2), A113349 (column 3); A113350.

Programs

  • PARI
    a(n)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+2,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);(A^2)[n+2,2]

A113348 Column 2 of triangle A113345, also equals column 0 of A113350^5.

Original entry on oeis.org

1, 10, 105, 1315, 19875, 357860, 7547602, 183518246, 5072961513, 157525315615, 5438681986872, 206954207984234, 8613936431369952, 389602050945939891, 19038814387466399303, 1000152089409979423044, 56229083214210734799693
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2005

Keywords

Comments

A113345 is the matrix square of A113340.

Crossrefs

Cf. A113340, A113345, A113346 (column 0), A113347 (column 1), A113349 (column 3); A113350.

Programs

  • PARI
    a(n)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+3,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);(A^2)[n+3,3]

A113349 Column 3 of triangle A113345, also equals column 0 of A113350^7.

Original entry on oeis.org

1, 14, 203, 3367, 64750, 1435497, 36312626, 1036877170, 33086963196, 1169366274321, 45412092740791, 1924418011638535, 88445828358934074, 4384910640997110602, 233384463606862044134, 13278878088344760573344
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2005

Keywords

Comments

A113345 is the matrix square of A113340.

Crossrefs

Cf. A113340, A113345, A113346 (column 0), A113347 (column 1), A113348 (column 2); A113350.

Programs

  • PARI
    a(n)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+4,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);(A^2)[n+4,4]

A113340 Triangle P, read by rows, such that P^2 transforms column k of P into column k+1 of P, so that column k of P equals column 0 of P^(2*k+1), where P^2 denotes the matrix square of P.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 12, 5, 1, 1, 69, 35, 7, 1, 1, 560, 325, 70, 9, 1, 1, 6059, 3880, 889, 117, 11, 1, 1, 83215, 57560, 13853, 1881, 176, 13, 1, 1, 1399161, 1030751, 258146, 36051, 3421, 247, 15, 1, 1, 28020221, 21763632, 5633264, 805875, 77726, 5629, 330, 17, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2005

Keywords

Examples

			Triangle P begins:
1;
1,1;
1,3,1;
1,12,5,1;
1,69,35,7,1;
1,560,325,70,9,1;
1,6059,3880,889,117,11,1;
1,83215,57560,13853,1881,176,13,1;
1,1399161,1030751,258146,36051,3421,247,15,1;
1,28020221,21763632,5633264,805875,77726,5629,330,17,1;
1,654110586,531604250,141487178,20661609,2023461,147810,8625,425,19,1;
Matrix square P^2 (A113345) starts:
1;
2,1;
5,6,1;
19,39,10,1;
113,327,105,14,1;
966,3556,1315,203,18,1; ...
where P^2 transforms column k of P into column k+1 of P:
at k=0, [P^2]*[1,1,1,1,1,...] = [1,3,12,69,560,...];
at k=1, [P^2]*[1,3,12,69,560,...] = [1,5,35,325,3880,...].
		

Crossrefs

Cf. A113341 (column 1), A113342 (column 2), A113343 (column 3), A113344 (column 4); A113345 (P^2), A113360 (P^3), A113350 (Q).

Programs

  • PARI
    P(n,k)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);A[n+1,k+1]

Formula

Let [P^m]_k denote column k of matrix power P^m,
so that triangular matrix P may be defined by
[P]_k = [P^(2*k+1)]_0, for k>=0.
Define the dual triangular matrix Q = A113350 by
[Q]_k = [P^(2*k+2)]_0, for k>=0.
Then, amazingly, powers of P and Q satisfy:
[P^(2*j+1)]_k = [P^(2*k+1)]_j,
[P^(2*j+2)]_k = [Q^(2*k+1)]_j,
[Q^(2*j+2)]_k = [Q^(2*k+2)]_j,
for all j>=0, k>=0.
Also, we have the column transformations:
P^2 * [P]k = [P]{k+1},
P^2 * [Q]k = [Q]{k+1},
Q^2 * [P^2]k = [P^2]{k+1},
Q^2 * [Q^2]k = [Q^2]{k+1},
for all k>=0.
Further, g.f.s of P and Q satisfy:
GF(P) = 1/(1-x) + x*y*GF(Q^2*P^-1),
GF(Q^-1*P^2) = 1 + x*y*GF(Q).

A113350 Triangle Q, read by rows, such that Q^2 transforms column k of Q^2 into column k+1 of Q^2, so that column k of Q^2 equals column 0 of Q^(2*k+2), where Q^2 denotes the matrix square of Q.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 19, 22, 6, 1, 113, 166, 51, 8, 1, 966, 1671, 561, 92, 10, 1, 10958, 21510, 7726, 1324, 145, 12, 1, 156700, 341463, 129406, 23010, 2575, 210, 14, 1, 2727794, 6496923, 2572892, 471724, 53935, 4434, 287, 16, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2005

Keywords

Examples

			Triangle Q begins:
1;
2,1;
5,4,1;
19,22,6,1;
113,166,51,8,1;
966,1671,561,92,10,1;
10958,21510,7726,1324,145,12,1;
156700,341463,129406,23010,2575,210,14,1;
2727794,6496923,2572892,471724,53935,4434,287,16,1;
56306696,144856710,59525136,11198006,1305070,108593,7021,376,18,1;
Matrix square Q^2 begins:
1;
4,1;
18,8,1;
112,68,12,1;
965,712,150,16,1;
10957,9270,2184,264,20,1; ...
where Q^2 transforms column k of Q^2 into column k+1:
at k=0, [Q^2]*[1,4,18,112,965,...] = [1,8,68,712,9270,...];
at k=1, [Q^2]*[1,8,68,712,9270,...] =
[1,12,150,2184,37523,...].
		

Crossrefs

Cf. A113351 (column 1), A113352 (column 2), A113353 (column 3), A113354 (column 4); A113355 (Q^2), A113365 (Q^3), A113340 (P), A113345 (P^2), A113360 (P^3).

Programs

  • PARI
    Q(n,k)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);(A^(2*k+2))[n-k+1,1]

Formula

Let [Q^m]_k denote column k of matrix power Q^m,
so that triangular matrix Q may be defined by
[Q]_k = [P^(2*k+2)]_0, for k>=0, where
the dual triangular matrix P = A113340 is defined by
[P]_k = [P^(2*k+1)]_0, for k>=0.
Then, amazingly, powers of P and Q satisfy:
[P^(2*j+1)]_k = [P^(2*k+1)]_j,
[P^(2*j+2)]_k = [Q^(2*k+1)]_j,
[Q^(2*j+2)]_k = [Q^(2*k+2)]_j,
for all j>=0, k>=0.
Also, we have the column transformations:
P^2 * [P]k = [P]{k+1},
P^2 * [Q]k = [Q]{k+1},
Q^2 * [P^2]k = [P^2]{k+1},
Q^2 * [Q^2]k = [Q^2]{k+1},
for all k>=0.

A113360 Matrix cube of triangle A113340.

Original entry on oeis.org

1, 3, 1, 12, 9, 1, 69, 81, 15, 1, 560, 879, 210, 21, 1, 6059, 11739, 3285, 399, 27, 1, 83215, 190044, 59395, 8127, 648, 33, 1, 1399161, 3654814, 1241270, 184436, 16245, 957, 39, 1, 28020221, 81947221, 29720808, 4695719, 442890, 28479, 1326, 45, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2005

Keywords

Examples

			Triangle begins:
1;
3,1;
12,9,1;
69,81,15,1;
560,879,210,21,1;
6059,11739,3285,399,27,1;
83215,190044,59395,8127,648,33,1;
1399161,3654814,1241270,184436,16245,957,39,1;
28020221,81947221,29720808,4695719,442890,28479,1326,45,1; ...
		

Crossrefs

Cf. A113340, A113350, A113361 (column 1), A113362 (column 2), A113363 (column 3), A113364 (column 4); A113345 (A113340^2).

Programs

  • PARI
    T(n,k)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);(A^3)[n+1,k+1]

A113355 Triangle T, read by rows, equal to the matrix square of triangle A113350, where T transforms column k of T into column k+1 of T.

Original entry on oeis.org

1, 4, 1, 18, 8, 1, 112, 68, 12, 1, 965, 712, 150, 16, 1, 10957, 9270, 2184, 264, 20, 1, 156699, 147174, 37523, 4912, 410, 24, 1, 2727793, 2786270, 754171, 104476, 9280, 588, 28, 1, 56306695, 61662544, 17502145, 2531004, 235025, 15672, 798, 32, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2005

Keywords

Comments

Also, T transforms column k of A113340^2 into column k+1 of A113340^2. Column 0: T(n,0) = A113356(n) = A113346(n+1) - 1, where A113346 equals column 0 of triangle A113345 (=A113340^2).

Examples

			Triangle T begins:
1;
4,1;
18,8,1;
112,68,12,1;
965,712,150,16,1;
10957,9270,2184,264,20,1;
156699,147174,37523,4912,410,24,1;
2727793,2786270,754171,104476,9280,588,28,1;
56306695,61662544,17502145,2531004,235025,15672,798,32,1; ...
where T transforms column k of T into column k+1:
at k=0, [Q^2]*[1,4,18,112,965,...] = [1,8,68,712,9270,...];
at k=1, [Q^2]*[1,8,68,712,9270,...] = [1,12,150,2184,37523,...].
		

Crossrefs

Cf. A113340, A113350, A113356 (column 0), A113357 (column 1), A113358 (column 2), A113359 (column 3); A091351.

Programs

  • PARI
    T(n,k)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B); (matrix(#A,#A,r,c,if(r>=c,(A^(2*c))[r-c+1,1]))^2)[n+1,k+1]

Formula

T(n, k) = sum_{j=0..n-k} T(n-k, j)*T(j+k-1, k-1) for n>=k>0 with T(n, 0) = A113346(n+1) - 1, for n>=0.

A113356 Column 0 of triangle A113355, which is the matrix square of A113350.

Original entry on oeis.org

1, 4, 18, 112, 965, 10957, 156699, 2727793, 56306695, 1350043964, 36979531548, 1141573025171, 39272377323692, 1491452150268435, 62027842189908230, 2805631215820328991, 137199563717151509076, 7215932308408758314446
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2005

Keywords

Crossrefs

Cf. A113340, A113350, A113355, A113357 (column 1), A113358 (column 2), A113359 (column 3).

Programs

  • PARI
    a(n)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B); (matrix(#A,#A,r,c,if(r>=c,(A^(2*c))[r-c+1,1]))^2)[n+1,1]

Formula

a(n) = A113346(n+1) - 1, where A113346 equals column 0 of triangle A113345 (=A113340^2).
Showing 1-9 of 9 results.