A113346
Column 0 of triangle A113345, also equals column 0 of A113350.
Original entry on oeis.org
1, 2, 5, 19, 113, 966, 10958, 156700, 2727794, 56306696, 1350043965, 36979531549, 1141573025172, 39272377323693, 1491452150268436, 62027842189908231, 2805631215820328992, 137199563717151509077, 7215932308408758314447
Offset: 0
-
a(n)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);(A^2)[n+1,1]
Original entry on oeis.org
1, 2, 1, 5, 6, 1, 19, 39, 10, 1, 113, 327, 105, 14, 1, 966, 3556, 1315, 203, 18, 1, 10958, 48659, 19875, 3367, 333, 22, 1, 156700, 812462, 357860, 64750, 6867, 495, 26, 1, 2727794, 16136404, 7547602, 1435497, 160005, 12199, 689, 30, 1
Offset: 0
Matrix square A113340^2 starts:
1;
2,1;
5,6,1;
19,39,10,1;
113,327,105,14,1;
966,3556,1315,203,18,1;
10958,48659,19875,3367,333,22,1;
156700,812462,357860,64750,6867,495,26,1;
2727794,16136404,7547602,1435497,160005,12199,689,30,1; ...
-
T(n,k)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);(A^2)[n+1,k+1]
A113347
Column 1 of triangle A113345, also equals column 0 of A113350^3.
Original entry on oeis.org
1, 6, 39, 327, 3556, 48659, 812462, 16136404, 373415239, 9900007028, 296557405704, 9921937128500, 367181525916035, 14906571298831661, 659191947156441025, 31558799717042019635, 1626968083690674214906
Offset: 0
-
a(n)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+2,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);(A^2)[n+2,2]
A113349
Column 3 of triangle A113345, also equals column 0 of A113350^7.
Original entry on oeis.org
1, 14, 203, 3367, 64750, 1435497, 36312626, 1036877170, 33086963196, 1169366274321, 45412092740791, 1924418011638535, 88445828358934074, 4384910640997110602, 233384463606862044134, 13278878088344760573344
Offset: 0
-
a(n)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+4,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);(A^2)[n+4,4]
Showing 1-4 of 4 results.
Comments