A114156
Triangle, read by rows, equal to the matrix inverse of P=A113370.
Original entry on oeis.org
1, -1, 1, 3, -4, 1, 6, 0, -7, 1, -8, 38, -21, -10, 1, -501, 692, -119, -60, -13, 1, -13623, 14910, -420, -735, -117, -16, 1, -409953, 401802, 22911, -12470, -2080, -192, -19, 1, -14544683, 13278520, 1577527, -255570, -51064, -4424, -285, -22, 1
Offset: 0
Triangle P^-1 begins:
1;
-1,1;
3,-4,1;
6,0,-7,1;
-8,38,-21,-10,1;
-501,692,-119,-60,-13,1;
-13623,14910,-420,-735,-117,-16,1;
-409953,401802,22911,-12470,-2080,-192,-19,1; ...
Triangle P^-2 begins:
1;
-2,1;
10,-8,1;
-9,28,-14,1;
-177,160,28,-20,1;
-2307,1366,455,10,-26,1;
-38874,15982,8666,660,-26,-32,1; ...
-
T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); (P^-1)[n+1,k+1]
A114150
Triangle, read by rows, given by the product R^2*Q^-1 = Q^3*P^-2 using triangular matrices P=A113370, Q=A113381, R=A113389.
Original entry on oeis.org
1, 4, 1, 28, 7, 1, 326, 91, 10, 1, 5702, 1722, 190, 13, 1, 136724, 43764, 4945, 325, 16, 1, 4226334, 1415799, 163705, 10751, 496, 19, 1, 161385532, 56096733, 6617605, 437723, 19896, 703, 22, 1
Offset: 0
Triangle R^2*Q^-1 = Q^3*P^-2 begins:
1;
4,1;
28,7,1;
326,91,10,1;
5702,1722,190,13,1;
136724,43764,4945,325,16,1;
4226334,1415799,163705,10751,496,19,1; ...
Compare to P (A113370):
1;
1,1;
1,4,1;
1,28,7,1;
1,326,91,10,1;
1,5702,1722,190,13,1; ...
Thus R^2*Q^-1 = Q^3*P^-2 equals P shift left one column.
-
T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^2*Q^-1)[n+1,k+1]
A114151
Triangle, read by rows, given by the product R^-2*Q^3 = Q^-1*P^2 using triangular matrices P=A113370, Q=A113381, R=A113389.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 15, 6, 1, 0, 136, 66, 9, 1, 0, 1998, 1091, 153, 12, 1, 0, 41973, 24891, 3621, 276, 15, 1, 0, 1166263, 737061, 110637, 8482, 435, 18, 1, 0, 40747561, 27110418, 4176549, 323874, 16430, 630, 21, 1
Offset: 0
Triangle R^-2*Q^3 = Q^-1*P^2 begins:
1;
0,1;
0,3,1;
0,15,6,1;
0,136,66,9,1;
0,1998,1091,153,12,1;
0,41973,24891,3621,276,15,1; ...
Compare to R (A113389):
1;
3,1;
15,6,1;
136,66,9,1;
1998,1091,153,12,1;
41973,24891,3621,276,15,1; ...
Thus R^-2*Q^3 = Q^-1*P^2 equals R shift right one column.
-
T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (Q^-1*P^2)[n+1,k+1]
A114152
Triangle, read by rows, given by the product R^3*P^-1 using triangular matrices P=A113370, R=A113389.
Original entry on oeis.org
1, 8, 1, 84, 14, 1, 1296, 252, 20, 1, 27850, 5957, 510, 26, 1, 784146, 179270, 16180, 858, 32, 1, 27630378, 6641502, 623115, 34125, 1296, 38, 1, 1177691946, 294524076, 28470525, 1599091, 61952, 1824, 44, 1
Offset: 0
Triangular matrix R^3*P^-1 begins:
1;
8,1;
84,14,1;
1296,252,20,1;
27850,5957,510,26,1;
784146,179270,16180,858,32,1;
27630378,6641502,623115,34125,1296,38,1; ...
Compare to P^2 (A113374):
1;
2,1;
6,8,1;
37,84,14,1;
429,1296,252,20,1;
7629,27850,5957,510,26,1; ...
Thus R^3*P^-1 equals P^2 shift left one column.
-
T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^3*P^-1)[n+1,k+1]
A114153
Triangle, read by rows, given by the product R^-1*P^3 using triangular matrices P=A113370, R=A113389.
Original entry on oeis.org
1, 0, 1, 0, 6, 1, 0, 48, 12, 1, 0, 605, 186, 18, 1, 0, 11196, 3892, 414, 24, 1, 0, 280440, 106089, 12021, 732, 30, 1, 0, 8981460, 3620379, 429345, 27152, 1140, 36, 1, 0, 353283128, 149740555, 18386361, 1196910, 51445, 1638, 42, 1
Offset: 0
Triangle R^-1*P^3 begins:
1;
0,1;
0,6,1;
0,48,12,1;
0,605,186,18,1;
0,11196,3892,414,24,1;
0,280440,106089,12021,732,30,1; ...
Compare to R^2 (A113392):
1;
6,1;
48,12,1;
605,186,18,1;
11196,3892,414,24,1;
280440,106089,12021,732,30,1; ...
Thus R^-1*P^3 equals R^2 shift right one column.
-
T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^-1*P^3)[n+1,k+1]
A114155
Triangle, read by rows, given by the product Q^-2*P^3 using triangular matrices P=A113370, Q=A113381.
Original entry on oeis.org
1, -1, 1, 3, 2, 1, 6, 6, 5, 1, -8, 37, 45, 8, 1, -501, 429, 635, 120, 11, 1, -13623, 7629, 12815, 2556, 231, 14, 1, -409953, 185776, 343815, 71548, 6556, 378, 17, 1, -14544683, 5817106, 11651427, 2508528, 233706, 13391, 561, 20, 1
Offset: 0
Triangle Q^-2*P^3 begins:
1;
-1,1;
3,2,1;
6,6,5,1;
-8,37,45,8,1;
-501,429,635,120,11,1;
-13623,7629,12815,2556,231,14,1;
-409953,185776,343815,71548,6556,378,17,1; ...
Compare to Q (A113381):
1;
2,1;
6,5,1;
37,45,8,1;
429,635,120,11,1;
7629,12815,2556,231,14,1;...
Thus Q^-2*P^3 shift left one column equals Q.
-
T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (Q^-2*P^3)[n+1,k+1]
A113378
Triangle, read by rows, equal to the matrix cube of A113370.
Original entry on oeis.org
1, 3, 1, 15, 12, 1, 136, 168, 21, 1, 1998, 3190, 483, 30, 1, 41973, 80136, 13615, 960, 39, 1, 1166263, 2553162, 469476, 35785, 1599, 48, 1, 40747561, 99579994, 19419225, 1562220, 74074, 2400, 57, 1, 1726907675, 4624245724, 944233801, 79072620
Offset: 0
Triangle A113370^3 begins:
1;
3,1;
15,12,1;
136,168,21,1;
1998,3190,483,30,1;
41973,80136,13615,960,39,1;
1166263,2553162,469476,35785,1599,48,1;
40747561,99579994,19419225,1562220,74074,2400,57,1;
1726907675,4624245724,944233801,79072620,3908034,132856,3363,66,1;
-
T(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^3)[n+1,k+1]
A113374
Triangle, read by rows, equal to the matrix square of A113370. Also given by the product: P^2 = Q*(R^-2)*Q^3, using triangular matrices P=A113370, Q=A113381 and R=A113389.
Original entry on oeis.org
1, 2, 1, 6, 8, 1, 37, 84, 14, 1, 429, 1296, 252, 20, 1, 7629, 27850, 5957, 510, 26, 1, 185776, 784146, 179270, 16180, 858, 32, 1, 5817106, 27630378, 6641502, 623115, 34125, 1296, 38, 1, 224558216, 1177691946, 294524076, 28470525, 1599091, 61952
Offset: 0
Triangle A113370^2 begins:
1;
2,1;
6,8,1;
37,84,14,1;
429,1296,252,20,1;
7629,27850,5957,510,26,1;
185776,784146,179270,16180,858,32,1;
5817106,27630378,6641502,623115,34125,1296,38,1;
224558216,1177691946,294524076,28470525,1599091,61952,1824,44,1;
-
T(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^2)[n+1,k+1]
A113384
Triangle, read by rows, equal to the matrix square of A113381. Also given by: Q^2 = R*P = R*Q*(R^-2)*Q*R = P*Q*(P^-2)*Q*P, using triangular matrices P=A113370, Q=A113381 and R=A113389.
Original entry on oeis.org
1, 4, 1, 22, 10, 1, 212, 130, 16, 1, 3255, 2365, 328, 22, 1, 70777, 57695, 8640, 616, 28, 1, 2022897, 1798275, 284356, 21197, 994, 34, 1, 72375484, 68931064, 11358500, 875424, 42196, 1462, 40, 1, 3130502129, 3155772612, 537277044, 42499204
Offset: 0
Triangle A113381^2 begins:
1;
4,1;
22,10,1;
212,130,16,1;
3255,2365,328,22,1;
70777,57695,8640,616,28,1;
2022897,1798275,284356,21197,994,34,1;
72375484,68931064,11358500,875424,42196,1462,40,1;
3130502129,3155772612,537277044,42499204,2094365,73797,2020,46,1;
-
T(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B); (matrix(#A,#A,r,c,if(r>=c,(A^(3*c-1))[r-c+1,1]))^2)[n+1,k+1]
A113392
Triangle, read by rows, equal to the matrix square of triangle A113389. Also given by the matrix product: R^2 = Q^3*(P^-2)*Q, using triangular matrices P=A113370, Q=A113381 and R=A113389.
Original entry on oeis.org
1, 6, 1, 48, 12, 1, 605, 186, 18, 1, 11196, 3892, 414, 24, 1, 280440, 106089, 12021, 732, 30, 1, 8981460, 3620379, 429345, 27152, 1140, 36, 1, 353283128, 149740555, 18386361, 1196910, 51445, 1638, 42, 1, 16567072675, 7316974618, 923656512
Offset: 0
Triangle A113389^2 begins:
1;
6,1;
48,12,1;
605,186,18,1;
11196,3892,414,24,1;
280440,106089,12021,732,30,1;
8981460,3620379,429345,27152,1140,36,1;
353283128,149740555,18386361,1196910,51445,1638,42,1;
16567072675,7316974618,923656512,61515702,2696010,87060,2226,48,1;
-
T(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B); (matrix(#A,#A,r,c,if(r>=c,(A^(3*c))[r-c+1,1]))^2)[n+1,k+1]
Showing 1-10 of 28 results.
Comments