cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A113370 Triangle P, read by rows, such that P^3 transforms column k of P into column k+1 of P, so that column k of P equals column 0 of P^(3*k+1), where P^3 denotes the matrix cube of P.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 28, 7, 1, 1, 326, 91, 10, 1, 1, 5702, 1722, 190, 13, 1, 1, 136724, 43764, 4945, 325, 16, 1, 1, 4226334, 1415799, 163705, 10751, 496, 19, 1, 1, 161385532, 56096733, 6617605, 437723, 19896, 703, 22, 1, 1, 7378504140, 2644883675
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Comments

Triangle A114150 illustrates the identity: R^2*Q^-1 = Q^3*P^-2.
See also A114152 for the matrix product: R^3*P^-1.

Examples

			Triangle P begins:
1;
1,1;
1,4,1;
1,28,7,1;
1,326,91,10,1;
1,5702,1722,190,13,1;
1,136724,43764,4945,325,16,1;
1,4226334,1415799,163705,10751,496,19,1;
1,161385532,56096733,6617605,437723,19896,703,22,1;
1,7378504140,2644883675,317416204,21179483,960696,33136,946,25,1;
Matrix cube P^3 (A113378) starts:
1;
3,1;
15,12,1;
136,168,21,1;
1998,3190,483,30,1;
41973,80136,13615,960,39,1; ...
where P^3 transforms column k of P into column k+1 of P:
at k=0, [P^3]*[1,1,1,1,1,...] = [1,4,28,326,5702,...];
at k=1, [P^3]*[1,4,28,326,5702,...] = [1,7,91,1722,43764,...].
		

Crossrefs

Cf. A113371 (column 1), A113372 (column 2), A113373 (column 3).
Cf. A113374 (P^2), A113378 (P^3), A113381 (Q), A113384 (Q^2), A113387 (Q^3), A113389 (R), A113392 (R^2), A113394 (R^3), A114156 (P^-1).
Cf. A114150 (R^2*Q^-1=Q^3*P^-2), A114152 (R^3*P^-1).
Cf. variants: A113340, A113350.

Programs

  • PARI
    P(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);A[n+1,k+1]

Formula

Let [P^m]_k denote column k of matrix power P^m,
so that triangular matrix P may be defined by
[P]_k = [P^(3*k+1)]_0, k>=0.
Define the triangular matrix Q = A113381 by
[Q]_k = [P^(3*k+2)]_0, k>=0.
Define the triangular matrix R = A113389 by
[R]_k = [P^(3*k+3)]_0, k>=0.
Then P, Q and R are related by:
Q^2 = R*P = R*Q*(R^-2)*Q*R = P*Q*(P^-2)*Q*P,
P^2 = Q*(R^-2)*Q^3, R^2 = Q^3*(P^-2)*Q.
Amazingly, columns in powers of P, Q, R, obey:
[P^(3*j+1)]_k = [P^(3*k+1)]_j,
[Q^(3*j+1)]_k = [P^(3*k+2)]_j,
[R^(3*j+1)]_k = [P^(3*k+3)]_j,
[Q^(3*j+2)]_k = [Q^(3*k+2)]_j,
[R^(3*j+2)]_k = [Q^(3*k+3)]_j,
[R^(3*j+3)]_k = [R^(3*k+3)]_j,
for all j>=0, k>=0.
Also, we have the column transformations:
P^3 * [P]k = [P]{k+1},
P^3 * [Q]k = [Q]{k+1},
P^3 * [R]k = [R]{k+1},
Q^3 * [P^2]k = [P^2]{k+1},
Q^3 * [Q^2]k = [Q^2]{k+1},
Q^3 * [R^2]k = [R^2]{k+1},
R^3 * [P^3]k = [P^3]{k+1},
R^3 * [Q^3]k = [Q^3]{k+1},
R^3 * [R^3]k = [R^3]{k+1},
for all k>=0.

A114156 Triangle, read by rows, equal to the matrix inverse of P=A113370.

Original entry on oeis.org

1, -1, 1, 3, -4, 1, 6, 0, -7, 1, -8, 38, -21, -10, 1, -501, 692, -119, -60, -13, 1, -13623, 14910, -420, -735, -117, -16, 1, -409953, 401802, 22911, -12470, -2080, -192, -19, 1, -14544683, 13278520, 1577527, -255570, -51064, -4424, -285, -22, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Examples

			Triangle P^-1 begins:
1;
-1,1;
3,-4,1;
6,0,-7,1;
-8,38,-21,-10,1;
-501,692,-119,-60,-13,1;
-13623,14910,-420,-735,-117,-16,1;
-409953,401802,22911,-12470,-2080,-192,-19,1; ...
Triangle P^-2 begins:
1;
-2,1;
10,-8,1;
-9,28,-14,1;
-177,160,28,-20,1;
-2307,1366,455,10,-26,1;
-38874,15982,8666,660,-26,-32,1; ...
		

Crossrefs

Cf. A114157 (column 0), A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114151 (R^-2*Q^3=Q^-1*P^2), A114152 (R^3*P^-1), A114153 (R^-1*P^3), A114154 (R^3*Q^-2), A114155 (Q^-2*P^3); A114158 (Q^-1), A114159 (R^-1).

Programs

  • PARI
    T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); (P^-1)[n+1,k+1]

A114151 Triangle, read by rows, given by the product R^-2*Q^3 = Q^-1*P^2 using triangular matrices P=A113370, Q=A113381, R=A113389.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 15, 6, 1, 0, 136, 66, 9, 1, 0, 1998, 1091, 153, 12, 1, 0, 41973, 24891, 3621, 276, 15, 1, 0, 1166263, 737061, 110637, 8482, 435, 18, 1, 0, 40747561, 27110418, 4176549, 323874, 16430, 630, 21, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Comments

Complementary to A114150, which gives R^2*Q^-1 = Q^3*P^-2.

Examples

			Triangle R^-2*Q^3 = Q^-1*P^2 begins:
1;
0,1;
0,3,1;
0,15,6,1;
0,136,66,9,1;
0,1998,1091,153,12,1;
0,41973,24891,3621,276,15,1; ...
Compare to R (A113389):
1;
3,1;
15,6,1;
136,66,9,1;
1998,1091,153,12,1;
41973,24891,3621,276,15,1; ...
Thus R^-2*Q^3 = Q^-1*P^2 equals R shift right one column.
		

Crossrefs

Cf. A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114152 (R^3*P^-1), A114153 (R^-1*P^3), A114154 (R^3*Q^-2), A114155 (Q^-2*P^3); A114156 (P^-1), A114158 (Q^-1), A114159 (R^-1).

Programs

  • PARI
    T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (Q^-1*P^2)[n+1,k+1]

A114152 Triangle, read by rows, given by the product R^3*P^-1 using triangular matrices P=A113370, R=A113389.

Original entry on oeis.org

1, 8, 1, 84, 14, 1, 1296, 252, 20, 1, 27850, 5957, 510, 26, 1, 784146, 179270, 16180, 858, 32, 1, 27630378, 6641502, 623115, 34125, 1296, 38, 1, 1177691946, 294524076, 28470525, 1599091, 61952, 1824, 44, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Comments

Complementary to A114153, which gives R^-1*P^3.

Examples

			Triangular matrix R^3*P^-1 begins:
1;
8,1;
84,14,1;
1296,252,20,1;
27850,5957,510,26,1;
784146,179270,16180,858,32,1;
27630378,6641502,623115,34125,1296,38,1; ...
Compare to P^2 (A113374):
1;
2,1;
6,8,1;
37,84,14,1;
429,1296,252,20,1;
7629,27850,5957,510,26,1; ...
Thus R^3*P^-1 equals P^2 shift left one column.
		

Crossrefs

Cf. A113374 (P^2), A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114151 (R^-2*Q^3=Q^-1*P^2), A114153 (R^-1*P^3), A114154 (R^3*Q^-2), A114155 (Q^-2*P^3); A114156 (P^-1), A114158 (Q^-1), A114159 (R^-1).

Programs

  • PARI
    T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^3*P^-1)[n+1,k+1]

A114153 Triangle, read by rows, given by the product R^-1*P^3 using triangular matrices P=A113370, R=A113389.

Original entry on oeis.org

1, 0, 1, 0, 6, 1, 0, 48, 12, 1, 0, 605, 186, 18, 1, 0, 11196, 3892, 414, 24, 1, 0, 280440, 106089, 12021, 732, 30, 1, 0, 8981460, 3620379, 429345, 27152, 1140, 36, 1, 0, 353283128, 149740555, 18386361, 1196910, 51445, 1638, 42, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Comments

Complementary to A114152, which gives R^3*P^-1.

Examples

			Triangle R^-1*P^3 begins:
1;
0,1;
0,6,1;
0,48,12,1;
0,605,186,18,1;
0,11196,3892,414,24,1;
0,280440,106089,12021,732,30,1; ...
Compare to R^2 (A113392):
1;
6,1;
48,12,1;
605,186,18,1;
11196,3892,414,24,1;
280440,106089,12021,732,30,1; ...
Thus R^-1*P^3 equals R^2 shift right one column.
		

Crossrefs

Cf. A113392 (R^2), A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114151 (R^-2*Q^3=Q^-1*P^2), A114152 (R^3*P^-1), A114154 (R^3*Q^-2), A114155 (Q^-2*P^3); A114156 (P^-1), A114158 (Q^-1), A114159 (R^-1).

Programs

  • PARI
    T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^-1*P^3)[n+1,k+1]

A114154 Triangle, read by rows, given by the product R^3*Q^-2 using triangular matrices Q=A113381, R=A113389.

Original entry on oeis.org

1, 5, 1, 45, 8, 1, 635, 120, 11, 1, 12815, 2556, 231, 14, 1, 343815, 71548, 6556, 378, 17, 1, 11651427, 2508528, 233706, 13391, 561, 20, 1, 480718723, 106427700, 10069521, 579047, 23817, 780, 23, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Comments

Complementary to A114155, which gives Q^-2*P^3.

Examples

			Triangle R^3*Q^-2 begins:
1;
5,1;
45,8,1;
635,120,11,1;
12815,2556,231,14,1;
343815,71548,6556,378,17,1; ...
Compare to Q (A113381):
1;
2,1;
6,5,1;
37,45,8,1;
429,635,120,11,1;
7629,12815,2556,231,14,1; ...
Thus R^3*Q^-2 equals Q shift left one column.
		

Crossrefs

Cf. A113394 (R^3), A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114151 (R^-2*Q^3=Q^-1*P^2), A114152 (R^3*P^-1), A114153 (R^-1*P^3), A114155 (Q^-2*P^3); A114156 (P^-1), A114158 (Q^-1), A114159 (R^-1).

Programs

  • PARI
    T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^3*Q^-2)[n+1,k+1]

A114155 Triangle, read by rows, given by the product Q^-2*P^3 using triangular matrices P=A113370, Q=A113381.

Original entry on oeis.org

1, -1, 1, 3, 2, 1, 6, 6, 5, 1, -8, 37, 45, 8, 1, -501, 429, 635, 120, 11, 1, -13623, 7629, 12815, 2556, 231, 14, 1, -409953, 185776, 343815, 71548, 6556, 378, 17, 1, -14544683, 5817106, 11651427, 2508528, 233706, 13391, 561, 20, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Comments

Complementary to A114154, which gives R^3*Q^-2. Column 0 equals column 0 of P^-1 (A114157).

Examples

			Triangle Q^-2*P^3 begins:
1;
-1,1;
3,2,1;
6,6,5,1;
-8,37,45,8,1;
-501,429,635,120,11,1;
-13623,7629,12815,2556,231,14,1;
-409953,185776,343815,71548,6556,378,17,1; ...
Compare to Q (A113381):
1;
2,1;
6,5,1;
37,45,8,1;
429,635,120,11,1;
7629,12815,2556,231,14,1;...
Thus Q^-2*P^3 shift left one column equals Q.
		

Crossrefs

Cf. A114157 (column 0), A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114151 (R^-2*Q^3=Q^-1*P^2), A114152 (R^3*P^-1), A114153 (R^-1*P^3), A114154 (R^3*Q^-2); A114156 (P^-1), A114158 (Q^-1), A114159 (R^-1).

Programs

  • PARI
    T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (Q^-2*P^3)[n+1,k+1]

A114158 Triangle, read by rows, equal to the matrix inverse of Q=A113381.

Original entry on oeis.org

1, -2, 1, 4, -5, 1, 21, -5, -8, 1, 130, 20, -32, -11, 1, 1106, 840, -260, -77, -14, 1, 10044, 24865, -2584, -1089, -140, -17, 1, -18366, 823383, -12828, -21428, -2737, -221, -20, 1, -9321125, 31847653, 1160956, -523831, -73458, -5474, -320, -23, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Examples

			Triangle Q^-1 begins:
1;
-2,1;
4,-5,1;
21,-5,-8,1;
130,20,-32,-11,1;
1106,840,-260,-77,-14,1;
10044,24865,-2584,-1089,-140,-17,1;
-18366,823383,-12828,-21428,-2737,-221,-20,1; ...
Triangle Q^-2 begins:
1;
-4,1;
18,-10,1;
20,30,-16,1;
-139,255,24,-22,1;
-3945,3085,544,0,-28,1;
-99849,51015,12444,671,-42,-34,1; ...
		

Crossrefs

Cf. A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114151 (R^-2*Q^3=Q^-1*P^2), A114152 (R^3*P^-1), A114153 (R^-1*P^3), A114154 (R^3*Q^-2), A114155 (Q^-2*P^3); A114156 (P^-1), A114159 (R^-1).

Programs

  • PARI
    T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); (Q^-1)[n+1,k+1]

A114159 Triangle, read by rows, equal to the matrix inverse of R=A113389.

Original entry on oeis.org

1, -3, 1, 3, -6, 1, 35, -12, -9, 1, 396, -29, -45, -12, 1, 6237, 582, -462, -96, -15, 1, 131613, 30684, -6408, -1534, -165, -18, 1, 3518993, 1300810, -96705, -34020, -3515, -252, -21, 1, 114244366, 59124226, -764835, -944334, -102180, -6675, -357, -24, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Examples

			Triangle R^-1 begins:
  1;
  -3,1;
  3,-6,1;
  35,-12,-9,1;
  396,-29,-45,-12,1;
  6237,582,-462,-96,-15,1;
  131613,30684,-6408,-1534,-165,-18,1;
  3518993,1300810,-96705,-34020,-3515,-252,-21,1;
  ...
Triangle R^-2 begins:
  1;
  -6,1;
  24,-12,1;
  79,30,-18,1;
  324,356,18,-24,1;
  42,5523,615,-12,-30,1;
  -79346,112533,16731,640,-60,-36,1;
  ...
		

Crossrefs

Cf. A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114151 (R^-2*Q^3=Q^-1*P^2), A114152 (R^3*P^-1), A114153 (R^-1*P^3), A114154 (R^3*Q^-2), A114155 (Q^-2*P^3); A114156 (P^-1), A114158 (Q^-1).

Programs

  • PARI
    {T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^-1)[n+1,k+1]}
Showing 1-9 of 9 results.