cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113389 Triangle R, read by rows, such that R^3 transforms column k of R^3 into column k+1 of R^3, so that column k of R^3 equals column 0 of R^(3*k+3), where R^3 denotes the matrix cube of R.

Original entry on oeis.org

1, 3, 1, 15, 6, 1, 136, 66, 9, 1, 1998, 1091, 153, 12, 1, 41973, 24891, 3621, 276, 15, 1, 1166263, 737061, 110637, 8482, 435, 18, 1, 40747561, 27110418, 4176549, 323874, 16430, 630, 21, 1, 1726907675, 1199197442, 188802141, 14813844, 751920, 28221
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2005

Keywords

Comments

Related matrix products: identity R^-2*Q^3 = Q^-1*P^2 (A114151) and R^-1*P^3 (A114153).

Examples

			Triangle R begins:
1;
3,1;
15,6,1;
136,66,9,1;
1998,1091,153,12,1;
41973,24891,3621,276,15,1;
1166263,737061,110637,8482,435,18,1;
40747561,27110418,4176549,323874,16430,630,21,1;
1726907675,1199197442,188802141,14813844,751920,28221,861,24,1;
Matrix cube R^3 (A113394) starts:
1;
9,1;
99,18,1;
1569,360,27,1;
34344,9051,783,36,1;
980487,284148,26820,1368,45,1; ...
where R^3 transforms column k of R^3 into column k+1:
at k=0, [R^3]*[1,9,99,1569,...] = [1,18,360,9051,...];
at k=1, [R^3]*[1,18,360,9051,..] = [1,27,783,26820,..].
		

Crossrefs

Cf. A113379 (column 0), A113390 (column 1), A113391 (column 2).
Cf. A113370 (P), A113374 (P^2), A113378 (P^3), A113381 (Q), A113384 (Q^2), A113387 (Q^3), A113392 (R^2), A113394 (R^3).
Cf. A114151 (R^-2*Q^3 = Q^-1*P^2), A114153 (R^-1*P^3).
Cf. variants: A113340, A113350.

Programs

  • PARI
    R(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^(3*k+3))[n-k+1,1]

Formula

Let [R^m]_k denote column k of matrix power R^m,
so that triangular matrix R may be defined by
[R]_k = [P^(3*k+3)]_0, k>=0,
where the triangular matrix P = A113370 satisfies:
[P]_k = [P^(3*k+1)]_0, k>=0.
Define the triangular matrix Q = A113381 by
[Q]_k = [P^(3*k+2)]_0, k>=0.
Then P, Q and R are related by:
Q^2 = R*P = R*Q*(R^-2)*Q*R = P*Q*(P^-2)*Q*P,
P^2 = Q*(R^-2)*Q^3, R^2 = Q^3*(P^-2)*Q.
Amazingly, columns in powers of P, Q, R, obey:
[P^(3*j+1)]_k = [P^(3*k+1)]_j,
[Q^(3*j+1)]_k = [P^(3*k+2)]_j,
[R^(3*j+1)]_k = [P^(3*k+3)]_j,
[Q^(3*j+2)]_k = [Q^(3*k+2)]_j,
[R^(3*j+2)]_k = [Q^(3*k+3)]_j,
[R^(3*j+3)]_k = [R^(3*k+3)]_j,
for all j>=0, k>=0.
Also, we have the column transformations:
P^3 * [P]k = [P]{k+1},
P^3 * [Q]k = [Q]{k+1},
P^3 * [R]k = [R]{k+1},
Q^3 * [P^2]k = [P^2]{k+1},
Q^3 * [Q^2]k = [Q^2]{k+1},
Q^3 * [R^2]k = [R^2]{k+1},
R^3 * [P^3]k = [P^3]{k+1},
R^3 * [Q^3]k = [Q^3]{k+1},
R^3 * [R^3]k = [R^3]{k+1},
for all k>=0.