cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A033715 Number of integer solutions (x, y) to the equation x^2 + 2y^2 = n.

Original entry on oeis.org

1, 2, 2, 4, 2, 0, 4, 0, 2, 6, 0, 4, 4, 0, 0, 0, 2, 4, 6, 4, 0, 0, 4, 0, 4, 2, 0, 8, 0, 0, 0, 0, 2, 8, 4, 0, 6, 0, 4, 0, 0, 4, 0, 4, 4, 0, 0, 0, 4, 2, 2, 8, 0, 0, 8, 0, 0, 8, 0, 4, 0, 0, 0, 0, 2, 0, 8, 4, 4, 0, 0, 0, 6, 4, 0, 4, 4, 0, 0, 0, 0, 10, 4, 4, 0, 0, 4, 0, 4, 4, 0, 0, 0, 0, 0, 0, 4, 4, 2, 12, 2, 0, 8, 0
Offset: 0

Views

Author

Keywords

Comments

Theta series of lattice C2 with Gram matrix [ 1, 0; 0, 2]. a(n) is nonzero if and only if n is in A002479. - Michael Somos, Dec 15 2011
Number 17 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted by |a_4(n)| in Kassel and Reutenauer 2015. - Michael Somos, Jun 16 2015

Examples

			G.f. = 1 + 2*q + 2*q^2 + 4*q^3 + 2*q^4 + 4*q^6 + 2*q^8 + 6*q^9 + 4*q^11 + 4*q^12 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 114 Entry 8(iii).
  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, 1999, p. 102, eq. 9.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 19.
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.24).
  • J. W. L. Glaisher, Table of the excess of the number of (8k+1)- and (8k+3)-divisors of a number over the number of (8k+5)- and (8k+7)-divisors, Messenger Math., 31 (1901), 82-91.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 346.

Crossrefs

Number of integer solutions to f(x,y) = n where f(x,y) is the principal binary quadratic form with discriminant d: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), this sequence (d=-8), A028609 (d=-11), A028641 (d=-19), A138811 (d=-43).

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 105); A[1] + 2*A[2] + 2*A[3]; /* Michael Somos, Aug 29 2014 */
  • Maple
    d:=proc(r,m,n) local i,t1; t1:=0; for i from 1 to n do if n mod i = 0 and i-r mod m = 0 then t1:=t1+1; fi; od: t1; end; [seq(2*(d(1,8,n)+d(3,8,n)-d(5,8,n)-d(7,8,n)),n=1..120)];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2], {q, 0, n}]; (* Michael Somos, Sep 09 2012 *)
    a[ n_] := If[ n < 1, Boole[ n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -2, #] &]]; (* Michael Somos, Aug 29 2014 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2] QPochhammer[ q^4])^3 / (QPochhammer[ q] QPochhammer[ q^8])^2, {q, 0, n}]; (* Michael Somos, Aug 29 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * (issquare(n) - issquare(2*n) + 2 * sum( i=1, sqrtint(n\2), issquare(n - 2*i^2))))};
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv( n, d, kronecker( -2, d)))}; /* Michael Somos, Aug 23 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 2], n)[n])}; /* Michael Somos, Aug 23 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^3 * eta(x^4 + A)^3 * eta(x^8 + A)^-2, n))};
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1,2]); Q.representation_number_list(104); # Peter Luschny, Jun 20 2014
    

Formula

Fine gives an explicit formula for a(n) in terms of the divisors of n.
Euler transform of period 8 sequence [ 2, -1, 2, -4, 2, -1, 2, -2, ...].
Expansion of (eta(q^2) * eta(q^4))^3 / (eta(q) * eta(q^8))^2 in powers of q.
Coefficients in expansion of Sum_{i,j=-inf..inf} q^(i^2 + 2*j^2).
G.f. = s(2)^3*s(4)^3/(s(1)^2*s(8)^2), where s(k) := subs(q=q^k, eta(q)), where eta(q) is Dedekind's function, cf. A010815. [Fine]
G.f.: 1 + 2 * Sum_{k>0} Kronecker(-2, n) * x^k / (1 - x^k) = 1 + 2 * Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(4*k)).
G.f.: theta_3(q) * theta_3(q^2) = Product_{k>0} (1 + x^(2*k)) * ((1 + x^k) * (1 - x^(2*k)) / (1 + x^(4*k)))^2.
From Michael Somos, Oct 23 2006: (Start)
Moebius transform is period 8 sequence [ 2, 0, 2, 0, -2, 0, -2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - 3*u3) * (u1 - u2 - u3 + u6) - (u2 - 3*u6) * (u1 - 2*u2 - u3 + 2*u6). (End)
a(n) = 2 * A002325(n) unless n = 0.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 8^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 09 2012
From Michael Somos, Aug 29 2014: (Start)
Expansion of phi(q) * phi(q^2) in powers of q where phi() is a Ramanujan theta function.
a(2*n) = a(n). a(2*n + 1) = 2 * A113411(n). (End)
From Michael Somos, May 17 2015: (Start)
a(n) = A028572(4*n) = A133692(2*n) = A139093(8*n) = A226225(8*n) = A226240(4*n) = A242609(4*n) = A245572(4*n) / 3 = (-1)^floor((n + 1)/2) * A082564(n).
a(8*n + 5) = a(8*n + 7) = 0. a(8*n + 1) = 2 * A112603(n). a(8*n + 3) = 4 * A033761(n). (End)
a(0) = 1, a(n) = 2 * b(n) for n > 0, where b() is multiplicative with b(2^e) = 1, b(p^e) = e + 1 if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e)/2 if p == 5, 7 (mod 8). - Jianing Song, Sep 04 2018 [Corrected by Jeremy Lovejoy, Nov 12 2024]
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = Pi/sqrt(2) = 2.221441... (A247719). - Amiram Eldar, Dec 16 2023

A133692 Expansion of phi(-q) * phi(q^2) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 2, -4, 2, 0, 4, 0, 2, -6, 0, -4, 4, 0, 0, 0, 2, -4, 6, -4, 0, 0, 4, 0, 4, -2, 0, -8, 0, 0, 0, 0, 2, -8, 4, 0, 6, 0, 4, 0, 0, -4, 0, -4, 4, 0, 0, 0, 4, -2, 2, -8, 0, 0, 8, 0, 0, -8, 0, -4, 0, 0, 0, 0, 2, 0, 8, -4, 4, 0, 0, 0, 6, -4, 0, -4, 4, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Sep 20 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is nonzero if and only if n is in A002479.

Examples

			G.f. = 1 - 2*q + 2*q^2 - 4*q^3 + 2*q^4 + 4*q^6 + 2*q^8 - 6*q^9 - 4*q^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(16), 1), 80); A[1] -2*A[2] +2*A[3] - 4*A[4] + 2*A[5] + 4*A[7]; /* Michael Somos, Aug 29 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n 2 DivisorSum[ n, KroneckerSymbol[ -2, #] &]]; (* Michael Somos, Oct 30 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^2], {q, 0, n}]; (* Michael Somos, Aug 29 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, (-1)^n * 2 * sumdiv(n, d, kronecker( -2, d)))};
    
  • PARI
    {a(n) = my(A); if ( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^5 / (eta(x^2 + A)^3 * eta(x^8 + A)^2), n))};
    

Formula

Expansion of eta(q)^2 * eta(q^4)^5 / (eta(q^2)^3 * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ -2, 1, -2, -4, -2, 1, -2, -2, ...].
Moebius transform is period 16 sequence [ -2, 4, -2, 0, 2, 4, 2, 0, -2, -4, -2, 0, 2, -4, 2, 0, ...].
a(n) = -2 * b(n) where b(n) is multiplicative with b(2^e) = -1 if e>0, b(p^e) = (1 + (-1)^e) / 2 if p == 5, 7 (mod 8), b(p^e) = e + 1 if p == 1, 3 (mod 8).
G.f.: Product_{k>0} (1 - x^k)^2 * (1 + x^(2*k))^3 / (1 + x^(4*k))^2.
a(8*n + 5) = a(8*n + 7) = 0.
A133690 is the convolution square. a(n) = (-1)^n * A033715(n). a(2*n) = A033715(n). a(2*n + 1) = -2 * A113411(n).

A227395 Expansion of q^2 * phi(-q) * psi(q^16) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 3, -2, 0, 0, 2, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1, -4, 0, 0, 4, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 4, -2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2, -2, 0
Offset: 2

Views

Author

Michael Somos, Jul 10 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q^2 - 2*q^3 + 2*q^6 - 2*q^11 + 3*q^18 - 2*q^19 + 2*q^22 - 4*q^27 + 2*q^34 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 2, 0, q^8] / 2, {q, 0, n}];
  • PARI
    {a(n) = local(A); if( n<2, 0, n -= 2; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^32 + A)^2 / (eta(x^2 + A) * eta(x^16 + A)), n))};

Formula

Expansion of eta(q)^2 * eta(q^32)^2 / (eta(q^2) * eta(q^16)) in powers of q.
Euler transform of period 32 sequence [ -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, 0, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(4*n) = a(4*n + 1) = a(8*n + 7) = 0. a(4*n + 2) = A113411(n). a(8*n + 3) = -2 * A033761(n).
G.f.: x^2 * Product_{k>0} (1 - x^k)^2 * (1 - x^(32*k))^2 / ((1 - x^(2*k)) * (1 - x^(16*k))).
a(n) = (-1)^n * A255258(n). - Michael Somos, Feb 20 2015

A125095 Expansion of phi(-x) * psi(x^4) in powers of x where psi(), phi() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 0, 0, 3, -2, 0, 0, 2, -2, 0, 0, 1, -4, 0, 0, 4, 0, 0, 0, 2, -2, 0, 0, 1, -4, 0, 0, 4, -2, 0, 0, 0, -2, 0, 0, 2, -2, 0, 0, 5, -2, 0, 0, 2, 0, 0, 0, 2, -6, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 3, -4, 0, 0, 4, -2, 0, 0, 2, -2, 0, 0, 0, -2, 0, 0, 6, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Nov 20 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 45 of the 74 eta-quotients listed in Table I of Martin (1996). - Michael Somos, Mar 14 2012

Examples

			G.f. = 1 - 2*x + 3*x^4 - 2*x^5 + 2*x^8 - 2*x^9 + x^12 - 4*x^13 + 4*x^16 + ...
G.f. = q - 2*q^3 + 3*q^9 - 2*q^11 + 2*q^17 - 2*q^19 + q^25 - 4*q^27 + 4*q^33 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 2 n + 1, If[ Mod[#, 8] > 3, -1, 1] &]]; (* Michael Somos, Jul 09 2015 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^8])^2 / (QPochhammer[ x^2] QPochhammer[ x^4]), {x, 0, n}]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sumdiv( 2*n + 1, d, (-1)^(d%8>3)))};
    
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; qfrep( [1, 0; 0, 8], n)[n] - qfrep( [3, 1; 1, 3], n)[n])};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^8 + A)^2 / (eta(x^2 + A) * eta(x^4 + A)), n))}
    
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv( n, d, kronecker(2, d) * kronecker( -4, n/d)))};

Formula

Expansion of q^(-1/2) * (eta(q)^2 * eta(q^8)^2) / (eta(q^2) * eta(q^4)) in powers of q.
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1^2*u6 * (u1 + 3*u3) + 2 * u2^2*u3 * (u2 + 3*u6) - 3 * u3^2*u2 * (u1 + u3) - 6 * u6^2*u1 * (u2 + u6).
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (e+1) * (-1)^e if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e) / 2 if p == 5, 7 (mod 8).
Euler transform of period 8 sequence [ -2, -1, -2, 0, -2, -1, -2, -2, ...].
G.f.: (Sum_{k in Z} (-1)^k * x^k^2) * (Sum_{k>=0} x^(2*k^2 + 2*k)).
a(4*n + 2) = a(4*n + 3) = 0. a(n) = (-1)^n * A113411(n). a(4*n) = A112603(n). a(4*n + 1) = -2 * A033761(n).

A226225 Expansion of phi(q) * phi(q^8) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 2, 6, 0, 0, 4, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 2, 8, 0, 0, 6, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 6, 4, 0, 0, 4, 0, 0, 0, 0, 10, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, May 31 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 2*q^4 + 2*q^8 + 6*q^9 + 4*q^12 + 2*q^16 + 4*q^17 + 4*q^24 + 2*q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^8], {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, 2 * (n%4 < 2) * sumdiv( n, d, kronecker( -2, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^16 + A))^5 / (eta(x + A) * eta(x^4 + A) * eta(x^8 + A) * eta(x^32 + A))^2, n))};

Formula

Expansion of (eta(q^2) * eta(q^16))^5 / (eta(q) * eta(q^4) * eta(q^8) * eta(q^32))^2 in powers of q.
Euler transform of period 32 sequence [2, -3, 2, -1, 2, -3, 2, 1, 2, -3, 2, -1, 2, -3, 2, -4, 2, -3, 2, -1, 2, -3, 2, 1, 2, -3, 2, -1, 2, -3, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: (Sum_{k in Z} x^k^2) * (Sum_{k in Z} (x^8)^k^2).
a(4*n + 2) = a(4*n + 3) = a(8*n + 5) = 0. a(4*n) = a(8*n) = A033715(n). a(4*n + 1) = A033715(4*n + 1). a(8*n + 1) = 2 * A112603(n). a(8*n + 4) = 2 * A113411(n).
(-1)^n * a(n) = A242609(n). - Michael Somos, Feb 20 2015

A242609 Expansion of phi(-q) * phi(q^8) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 0, 0, 2, 0, 0, 0, 2, -6, 0, 0, 4, 0, 0, 0, 2, -4, 0, 0, 0, 0, 0, 0, 4, -2, 0, 0, 0, 0, 0, 0, 2, -8, 0, 0, 6, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, 0, 4, -2, 0, 0, 0, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 6, -4, 0, 0, 4, 0, 0, 0, 0, -10, 0
Offset: 0

Views

Author

Michael Somos, May 19 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q + 2*q^4 + 2*q^8 - 6*q^9 + 4*q^12 + 2*q^16 - 4*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^8], {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, 2 * (-1)^n * (n%4 < 2) * sumdiv( n, d, kronecker( -2, d)))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^16 + A)^5 / (eta(x^2 + A) * eta(x^8 + A)^2 * eta(x^32 + A)^2), n))};

Formula

Expansion of eta(q)^2 * eta(q^16)^5 / (eta(q^2) * eta(q^8)^2 * eta(q^32)^2) in powers of q.
G.f.: (Sum_{k in Z} (-x)^k^2) * (Sum_{k in Z} (x^8)^k^2).
a(4*n + 2) = a(4*n + 3) = a(8*n + 5) = 0. a(4*n) = a(8*n) = A033715(n). a(8*n + 1) = -2 * A112603(n). a(8*n + 4) = 2 * A113411(n).
a(n) = (-1)^n * A226225(n).

A133657 Expansion of q * (phi(q) * psi(q^4))^2 in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 4, 4, 0, 6, 16, 8, 0, 13, 24, 12, 0, 14, 32, 24, 0, 18, 52, 20, 0, 32, 48, 24, 0, 31, 56, 40, 0, 30, 96, 32, 0, 48, 72, 48, 0, 38, 80, 56, 0, 42, 128, 44, 0, 78, 96, 48, 0, 57, 124, 72, 0, 54, 160, 72, 0, 80, 120, 60, 0, 62, 128, 104, 0, 84, 192, 68, 0, 96
Offset: 1

Views

Author

Michael Somos, Sep 20 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 4*q^2 + 4*q^3 + 6*q^5 + 16*q^6 + 8*q^7 + 13*q^9 + 24*q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q^2]/2)^2, {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
    a[n_] := Switch[IntegerExponent[n, 2], 0, DivisorSigma[1, n], 1, 4*DivisorSigma[1, n/2], , 0]; Array[a, 100] (* _Amiram Eldar, Nov 12 2022 *)
  • PARI
    {a(n) = if( n<1, 0, if( n%2, sigma(n), if( n%4, 4 * sigma(n/2), 0)))};
    
  • PARI
    {a(n) = my(A); if ( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 * eta(x^8 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^3) )^2, n))};

Formula

Expansion of (eta(q^2)^5 * eta(q^8)^2 / (eta(q)^2 * eta(q^4)^3))^2 in powers of q.
Euler transform of period 8 sequence [ 4, -6, 4, 0, 4, -6, 4, -4, ...].
a(n) is multiplicative with a(2) = 4, a(2^e) = 0 if e>1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133690.
a(4*n) = 0. a(4*n+2) = 4 * sigma(2*n+1). a(2*n+1) = sigma(2*n+1).
a(n) = -(-1)^n * A121455(n). Convolution square of A113411.
a(2*n + 1) = A008438. a(4*n + 1) = A112610(n). a(4*n + 3) = 4 * A097723(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/16 = 0.6168502... (A222068). - Amiram Eldar, Nov 12 2022

A226240 Expansion of phi(q^4) * phi(q^8) + 2 * q *phi(q^2) * psi(q^8) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 4, 2, 0, 0, 0, 2, 6, 0, 4, 4, 0, 0, 0, 2, 4, 0, 4, 0, 0, 0, 0, 4, 2, 0, 8, 0, 0, 0, 0, 2, 8, 0, 0, 6, 0, 0, 0, 0, 4, 0, 4, 4, 0, 0, 0, 4, 2, 0, 8, 0, 0, 0, 0, 0, 8, 0, 4, 0, 0, 0, 0, 2, 0, 0, 4, 4, 0, 0, 0, 6, 4, 0, 4, 4, 0, 0, 0, 0, 10, 0, 4, 0, 0
Offset: 0

Views

Author

Michael Somos, Jun 01 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 4*q^3 + 2*q^4 + 2*q^8 + 6*q^9 + 4*q^11 + 4*q^12 + 2*q^16 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(32), 1), 87); A[1] + 2*A[2] + 4*A[4] + 2*A[5] + 2*A[9] + 6*A[10] + 4*A[12] + 4*A[13] + 4*A[16]; /* Michael Somos, Jun 18 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 + 2 Sum[ Boole[ 2 != Mod[ k, 4]] q^k (1 + q^(2 k)) / (1 + q^(4 k)), {k, n}], {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, 2 * (n%4 != 2) * sumdiv( n, d, kronecker( -2, d)))};
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); 2 * prod( k= 1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, e>1, if( p%8<5, e+1, (1 + (-1)^e) / 2)))))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^8 + A) * eta(x^16 + A))^3 / (eta(x^4 + A) * eta(x^32 + A))^2 + 2 * x * eta(x^4 + A)^5 * eta(x^16 + A)^2 / (eta(x^2 + A)^2 * eta(x^8 + A)^3), n))};
    

Formula

Expansion of phi(q) * phi(q^8) + 4 * q^3 * psi(q^8) * psi(q^16) in powers of q where phi(), psi() are Ramanujan theta functions.
a(n) = 2 * b(n) where b(n) is multiplicative and b(2) = 0, b(2^e) = 1 if e>1, b(p^e) = e+1 if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e)/2 if p == 5, 7 (mod 8).
G.f.: 1 + 2 * Sum_{k>0 & k !=2 (mod 4)} q^k * (1 + q^(2*k)) / (1 + q^(4*k)).
a(4*n + 2) = 0. a(2*n + 1) = 2 * A113411(n). a(4*n) = A033715(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3*Pi/(4*sqrt(2)) = 1.6660811... . - Amiram Eldar, Dec 29 2023

A244543 Expansion of phi(q^2) * (phi(q) + phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 3, 2, 3, 0, 2, 0, 3, 3, 4, 2, 2, 0, 0, 0, 3, 2, 5, 2, 4, 0, 2, 0, 2, 1, 4, 4, 0, 0, 0, 0, 3, 4, 6, 0, 5, 0, 2, 0, 4, 2, 0, 2, 2, 0, 0, 0, 2, 1, 7, 4, 4, 0, 4, 0, 0, 4, 4, 2, 0, 0, 0, 0, 3, 0, 4, 2, 6, 0, 0, 0, 5, 2, 4, 2, 2, 0, 0, 0, 4, 5, 6, 2, 0, 0, 2
Offset: 0

Views

Author

Michael Somos, Jun 29 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + q + 3*q^2 + 2*q^3 + 3*q^4 + 2*q^6 + 3*q^8 + 3*q^9 + 4*q^10 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 33); A[1] + A[2] + 3*A[3];
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ {1, 2, 1, 0, -1, -2, -1, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2] (EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, [0, 1, 2, 1, 0, -1, -2, -1][d%8 + 1]))};
    
  • PARI
    {a(n) = my(A, B); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); B = subst(A, x, x^2); polcoeff( B * (A + B) / 2, n))};
    
  • Sage
    A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[0] + A[1] + 3*A[2];
    

Formula

Expansion of f(-q^3, -q^5)^2 * phi(q^2) / psi(-q) = f(-q^3, -q^5)^2 * chi(q^2)^2 / chi(-q) in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [1, 2, -1, -2, -1, 2, 1, -2, ...].
Moebius transform is period 8 sequence [1, 2, 1, 0, -1, -2, -1, 0, ...].
a(2*n) = A244540(n). a(2*n + 1) = A113411(n). a(8*n + 1) = A112603(n). a(8*n + 3) = 2* A033761(n). a(8*n + 5) = a(8*n + 7) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi*(sqrt(2)+1)/4 = 1.896118... . - Amiram Eldar, Jun 08 2025

A245572 Expansion of phi(q) * phi(q^2) + 2 * phi(-q^2) * phi(q^4) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

3, 2, -2, 4, 6, 0, -4, 0, 6, 6, 0, 4, 12, 0, 0, 0, 6, 4, -6, 4, 0, 0, -4, 0, 12, 2, 0, 8, 0, 0, 0, 0, 6, 8, -4, 0, 18, 0, -4, 0, 0, 4, 0, 4, 12, 0, 0, 0, 12, 2, -2, 8, 0, 0, -8, 0, 0, 8, 0, 4, 0, 0, 0, 0, 6, 0, -8, 4, 12, 0, 0, 0, 18, 4, 0, 4, 12, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 25 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 3 + 2*q - 2*q^2 + 4*q^3 + 6*q^4 - 4*q^6 + 6*q^8 + 6*q^9 + 4*q^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(32), 1), 81);  3*A[1] + 2*A[2] - 2*A[3] + 4*A[4] + 6*A[5] - 4*A[7] + 6*A[9] + 6*A[10] + 4*A[12] + 12*A[13] + 4*A[16];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] + 2 EllipticTheta[ 3, 0, -q^2] EllipticTheta[ 3, 0, q^4], {q, 0, n}];
  • PARI
    {a(n) = my(A, p, e); if( n<1, 3*(n==0), A = factor(n); 2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, if( e>1, 3, -1), p%8>3, (1 + (-1)^e) / 2, e+1)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A)^3 / (eta(x + A)^2 * eta(x^8 + A)^2) + 2 * eta(x^2 + A)^2 * eta(x^8 + A)^5 / (eta(x^4 + A)^3 * eta(x^16 + A)^2), n))};
    

Formula

a(n) = 2 * b(n) where b(n) is multiplicative with b(2) = -1, b(2^e) = 3 if e>1, b(p^e) = e+1 if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e)/2 if p == 5, 7 (mod 8).
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A226240.
a(2*n + 1) = 2 * A113411(n). a(4*n) = 3 * A033715(n). a(8*n + 1) = 2 * A112603(n). a(8*n = 3) = 4 * A033761(n). a(8*n + 5) = a(8*n = 7) = 0.
Showing 1-10 of 14 results. Next