A113418 Expansion of (eta(q^2)^7*eta(q^4)/(eta(q)*eta(q^8))^2-1)/2 in powers of q.
1, -1, -2, -1, -4, 2, 8, -1, 7, 4, -10, 2, -12, -8, 8, -1, 18, -7, -18, 4, -16, 10, 24, 2, 21, 12, -20, -8, -28, -8, 32, -1, 20, -18, -32, -7, -36, 18, 24, 4, 42, 16, -42, 10, -28, -24, 48, 2, 57, -21, -36, 12, -52, 20, 40, -8, 36, 28, -58, -8, -60, -32, 56, -1, 48, -20, -66, -18, -48, 32, 72, -7, 74, 36, -42, 18, -80, -24
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[1 < Mod[p, 8] < 7, ((-p)^(e+1)-1)/(-p-1), (p^(e+1)-1)/(p-1)]; f[2, e_] := -1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 22 2023 *)
-
PARI
a(n)=if(n<1, 0, -sumdiv(n,d, d*(d%2)*(-1)^(n/d+(d+1)\4)))
-
PARI
{a(n)=local(A,p,e); if(n<1, 0, A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k,1], e=A[k,2]; if(p==2, -1, p*=kronecker(2,p); (p^(e+1)-1)/(p-1)))))}
Formula
a(n) is multiplicative and a(2^e) = -1 if e>0, a(p^e) = (p^(e+1)-1)/(p-1) if p == 1, 7 (mod 8), a(p^e) = ((-p)^(e+1)-1)/(-p-1) if p == 3, 5 (mod 8).
G.f.: Sum_{k>0} (2k-1)*(-1)^[k/2]*x^(2k-1)/(1+x^(2k-1)).
From Amiram Eldar, Jan 28 2024: (Start)
a(n) = (-1)^(n+1) * A117000(n).
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(24*sqrt(2)) = 0.290786... . (End)
Comments