cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113432 Pierpont semiprimes: semiprimes of the form (2^K)*(3^L)+1.

Original entry on oeis.org

4, 9, 10, 25, 33, 49, 55, 65, 82, 129, 145, 217, 289, 649, 865, 973, 1537, 1945, 2049, 2305, 3073, 4097, 4609, 5833, 6145, 6913, 8193, 8749, 9217, 11665, 13123, 15553, 20737, 23329, 24577, 27649, 31105, 34993, 41473, 62209, 69985, 73729, 78733
Offset: 1

Views

Author

Jonathan Vos Post, Nov 01 2005

Keywords

Examples

			a(1) = 4 = (2^0)*(3^1)+1 = 2^2 hence the semiprime A001358(1).
a(2) = 9 = (2^3)*(3^0)+1 = 3^2 hence the semiprime A001358(3).
a(3) = 10 = (2^0)*(3^2)+1 = 2 * 5 hence the semiprime A001358(4).
a(4) = 25 = (2^3)*(3^1)+1 = 5^2 hence the semiprime A001358(9).
a(5) = 33 = (2^5)*(3^0)+1 = 3 * 11 hence the semiprime A001358(11).
a(6) = 49 = (2^4)*(3^1)+1 = 7^2 hence the semiprime A001358(17).
a(7) = 55 = (2^1)*(3^3)+1 = 5 * 11 hence the semiprime A001358(19).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Plus @@ Last /@ FactorInteger[ # ] == 2 && Max @@ First /@ FactorInteger[ # - 1] < 5 &] (* Ray Chandler, Jan 24 2006 *)

Formula

{a(n)} = Intersection of {(2^K)*(3^L)+1} A055600 and semiprimes A001358. a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 2.