cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113441 Second row of A113439.

Original entry on oeis.org

1, 3, 12, 50, 212, 905, 3872, 16576, 70968, 303832, 1300737, 5568473, 23838453, 102051167, 436874885, 1870233780, 8006350999, 34274673894, 146727674181, 628131735844, 2688991567300, 11511399994065, 49279563214531
Offset: 0

Views

Author

Floor van Lamoen, Nov 04 2005

Keywords

Crossrefs

Cf. A113439.

Programs

  • Mathematica
    LinearRecurrence[{9,-28,38,-20,1},{1,3,12,50,212},30] (* Harvey P. Dale, Apr 06 2013 *)
    CoefficientList[Series[-(1 - 6*x + 13*x^2 - 12*x^3 + 4*x^4)/(-1 + 9*x - 28*x^2 + 38*x^3 - 20*x^4 + x^5), {x,0,50}], x] (* G. C. Greubel, Mar 11 2017 *)
  • PARI
    x='x+O('x^50); Vec(-(1-6*x+13*x^2-12*x^3+4*x^4)/(-1+9*x-28*x^2+38*x^3-20*x^4+x^5)) \\ G. C. Greubel, Mar 11 2017

Formula

a(n) = A113439(4*n+1).
a(n) = 9*a(n-1) - 28*a(n-2) + 38*a(n-3) - 20*a(n-4) + a(n-5).
G.f.: -(1-6*x+13*x^2-12*x^3+4*x^4)/(-1+9*x-28*x^2+38*x^3-20*x^4+x^5).