A113490 Semiprimes a such that there exist three semiprimes b, c and d with a^3=b^3+c^3+d^3.
206, 519, 703, 869, 1418, 1923, 1945, 2066, 2095, 2127, 2446, 2759, 2867, 2881, 2901, 2913, 2974, 3099, 3155, 3207, 3383, 3398, 3545, 3649, 3777, 3814, 3898, 4435, 4766, 4778, 4873, 4963, 5091, 5105, 5165, 5534, 5582, 5638, 5771, 5834, 5855, 6033, 6098
Offset: 1
Keywords
Examples
206^3 = 35^3 + 77^3 + 202^3. 519^3 = 4^3 + 303^3 + 482^3 703^3 = 111^3 + 291^3 + 685^3. 869^3 = 466^3 + 629^3 + 674^3. 2095^3 = 339^3 + 753^3 + 2059^3 = 543^3 + 1119^3 + 1969^3 (two ways). 9897^3 = 537^3 + 1454^3 + 9886^3 = 2071^3 + 3183^3 + 9755^3 (two ways). Each of these numbers (other than the exponent 3) is a semiprime (A001358).
Extensions
Extended by Ray Chandler, Jan 20 2006
Comments