A113497 Ascending descending base exponent transform of sequence A000034(n) = 1 + n mod 2.
1, 3, 6, 6, 11, 9, 16, 12, 21, 15, 26, 18, 31, 21, 36, 24, 41, 27, 46, 30, 51, 33, 56, 36, 61, 39, 66, 42, 71, 45, 76, 48, 81, 51, 86, 54, 91, 57, 96, 60, 101, 63, 106, 66, 111, 69, 116, 72, 121, 75, 126, 78, 131, 81, 136, 84, 141, 87, 146, 90, 151, 93, 156, 96, 161, 99, 166, 102, 171
Offset: 1
Examples
a(1) = 1^1 = 1. a(2) = 1^2 + 2^1 = 3. a(3) = 1^1 + 2^2 + 1^1 = 6. a(4) = 1^2 + 2^1 + 1^2 + 2^1 = 6. a(5) = 1^1 + 2^2 + 1^1 + 2^2 + 1^1 = 11. a(6) = 1^2 + 2^1 + 1^2 + 2^1 + 1^2 + 2^1 = 9.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Crossrefs
Programs
-
Mathematica
Table[(-3 + 3*(-1)^n + 8*n - 2*(-1)^n*n)/4, {n,1,50}] (* G. C. Greubel, Mar 12 2017 *)
-
PARI
x='x +O('x^50); Vec(x*(1+3*x+4*x^2)/((1-x)^2*(1+x)^2)) \\ G. C. Greubel, Mar 12 2017
Formula
a(2*n) = 3*n; a(2*n+1) = 5*n+1.
From Colin Barker, Jun 16 2012: (Start)
a(n) = (-3+3*(-1)^n+8*n-2*(-1)^n*n)/4.
a(n) = 2*a(n-2)-a(n-4).
G.f.: x*(1+3*x+4*x^2)/((1-x)^2*(1+x)^2). (End)
E.g.f.: (1/2)*(3*(x-1)*sinh(x) + 5*x*cosh(x)). - G. C. Greubel, Mar 12 2017
Extensions
Definition improved by M. F. Hasler, Jan 13 2012
Comments