cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113497 Ascending descending base exponent transform of sequence A000034(n) = 1 + n mod 2.

Original entry on oeis.org

1, 3, 6, 6, 11, 9, 16, 12, 21, 15, 26, 18, 31, 21, 36, 24, 41, 27, 46, 30, 51, 33, 56, 36, 61, 39, 66, 42, 71, 45, 76, 48, 81, 51, 86, 54, 91, 57, 96, 60, 101, 63, 106, 66, 111, 69, 116, 72, 121, 75, 126, 78, 131, 81, 136, 84, 141, 87, 146, 90, 151, 93, 156, 96, 161, 99, 166, 102, 171
Offset: 1

Views

Author

Jonathan Vos Post, Jan 10 2006

Keywords

Comments

A000034 = 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ... = continued fraction for (sqrt(3)+1)/2 (cf. A040001) = base 3 digital root of n+1. In general, the ascending descending base exponent transform of any simple periodic sequence can be written as a periodic set of interleaved sequences.

Examples

			a(1) = 1^1 = 1.
a(2) = 1^2 + 2^1 = 3.
a(3) = 1^1 + 2^2 + 1^1 = 6.
a(4) = 1^2 + 2^1 + 1^2 + 2^1 = 6.
a(5) = 1^1 + 2^2 + 1^1 + 2^2 + 1^1 = 11.
a(6) = 1^2 + 2^1 + 1^2 + 2^1 + 1^2 + 2^1 = 9.
		

Crossrefs

Programs

  • Mathematica
    Table[(-3 + 3*(-1)^n + 8*n - 2*(-1)^n*n)/4, {n,1,50}] (* G. C. Greubel, Mar 12 2017 *)
  • PARI
    x='x +O('x^50); Vec(x*(1+3*x+4*x^2)/((1-x)^2*(1+x)^2)) \\ G. C. Greubel, Mar 12 2017

Formula

a(n) = Sum_{i=1..n} A000034(i)^A000034(n-i+1).
a(2*n) = 3*n; a(2*n+1) = 5*n+1.
From Colin Barker, Jun 16 2012: (Start)
a(n) = (-3+3*(-1)^n+8*n-2*(-1)^n*n)/4.
a(n) = 2*a(n-2)-a(n-4).
G.f.: x*(1+3*x+4*x^2)/((1-x)^2*(1+x)^2). (End)
E.g.f.: (1/2)*(3*(x-1)*sinh(x) + 5*x*cosh(x)). - G. C. Greubel, Mar 12 2017

Extensions

Definition improved by M. F. Hasler, Jan 13 2012