A113498 Ascending descending base exponent transform of omega(n) (A001221).
1, 2, 3, 4, 6, 7, 8, 9, 13, 12, 14, 15, 21, 19, 24, 21, 29, 28, 30, 28, 40, 35, 41, 42, 46, 41, 53, 44, 59, 52, 61, 55, 79, 55, 69, 66, 86, 70, 90, 73, 94, 93, 91, 81, 121, 88, 114, 103, 123, 95, 137, 102, 138, 122, 132, 114, 168, 121, 144, 145, 159, 137, 180
Offset: 2
Examples
Since omega(n) = A001221(n) = 0, 1, 1, 1, 1, 2, 1, 1, 1, 2 and we skip the initial zero term, we have: a(1) = 1^1 = 1. a(2) = 1^1 + 1^1 = 2. a(3) = 1^1 + 1^1 + 1^1 = 3. a(4) = 1^1 + 1^1 + 1^1 + 1^1 = 4. a(5) = 1^1 + 1^1 + 1^1 + 1^1 + 2^1 = 6. a(9) = 1^1 + 1^1 + 1^1 + 1^1 + 2^2 + 1^1 + 1^1 + 1^1 + 2^1 = 13.
Links
- G. C. Greubel, Table of n, a(n) for n = 2..5000
Crossrefs
Programs
-
Mathematica
Table[Sum[PrimeNu[k]^(PrimeNu[n - k + 2]), {k, 2, n}], {n, 2, 50}] (* G. C. Greubel, May 18 2017 *)
-
PARI
for(n=2,25, print1(sum(k=2,n, omega(k)^(omega(n-k+2))), ", ")) \\ G. C. Greubel, May 18 2017
Formula
Extensions
Corrected and extended by Giovanni Resta, Jun 13 2016
Formulas corrected by G. C. Greubel, May 18 2017