A113532 a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6.
1, 28, 769, 7108, 36409, 131836, 380713, 937924, 2054353, 4110364, 7654321, 13446148, 22505929, 36167548, 56137369, 84557956, 124076833, 177920284, 249972193, 344857924, 468033241, 625878268, 825796489, 1076318788
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Mathematica
Table[1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6, {n,0,50}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 28, 769, 7108, 36409, 131836, 380713}, 50] (* G. C. Greubel, Mar 15 2017 *)
-
PARI
for(n=0,50, print1(1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6, ", ")) \\ G. C. Greubel, Mar 15 2017
Formula
a(n) = 1 + 2*n + 3*n^2 + 4*n^3 + 5*n^4 + 6*n^5 + 7*n^6.
O.g.f.: -12636/(-1+x)^4 -4/(-1+x) -21480/(-1+x)^5 -309/(-1+x)^2 -16920/(-1+x)^6 -3342/(-1+x)^3-5040/(-1+x)^7 . - R. J. Mathar, Feb 26 2008
Comments