cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113691 Semiprimes in A033951.

Original entry on oeis.org

46, 77, 218, 1073, 1351, 1502, 1661, 2186, 2998, 4193, 4727, 5006, 5293, 5891, 7183, 8603, 10558, 12266, 13631, 14581, 15563, 19811, 20953, 25202, 27806, 29843, 30538, 31241, 32671, 33398, 35627, 37153, 39502, 40301, 46118, 46981, 49618, 56051
Offset: 1

Views

Author

Jonathan Vos Post, Nov 05 2005

Keywords

Comments

This sequence, A113691, contains semiprimes from the center straight down the y-axis in the semiprime spiral of A113688-A113689. A113693 contains semiprimes from the center straight up the y-axis in the semiprime spiral. A113690 contains semiprimes from the center straight right along the x-axis in the semiprime spiral. Semiprimes from the center straight left along the x-axis in the semiprime spiral are A113692.

Examples

			a(5) = 4*18^2 + 3*18 + 1 = 1351 = 7 * 193.
a(6) = 4*19^2 + 3*19 + 1 = 1502 = 2 * 751.
a(7) = 4*20^2 + 3*20 + 1 = 1661 = 11 * 151.
a(5), a(6) and a(7) are vertically adjacent in the semiprime spiral, hence part of a clump and not isolated semiprimes as in A113688. a(11), a(12) and a(13) are another such vertical string of 3 adjacent semiprimes and so is a(26), a(27) and a(28).
a(52) = 4*152^2 + 3*152 + 1 = 92873 = 11 * 8443 is the greatest member under 10^5.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:= func; [s: n in [1..120] | IsSemiprime(s) where s is 4*n^2 + 3*n + 1]; // Vincenzo Librandi, Sep 22 2012
  • Mathematica
    Select[Table[4*n^2 + 3*n + 1, {n, 200}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 22 2012 *)

Formula

{a(n)} = Intersection of A001358 and A033951. Semiprimes of the form 4*k^2 + 3*k + 1.