Original entry on oeis.org
4, 15, 34, 249, 391, 565, 771, 886, 1915, 3814, 5149, 5739, 6046, 7354, 9169, 10765, 11611, 15814, 16321, 18429, 20665, 22426, 24259, 28141, 29499, 32311, 36769, 39106, 43161, 48291, 52786, 53709, 57481, 60394, 63379, 65409, 67471, 69565
Offset: 1
a(27) = 4*97^2 - 9*97 + 6 = 36769 = 83 * 443.
a(28) = 4*100^2 - 9*100 + 6 = 39106 = 2 * 19553.
a(27) and a(28) are horizontally adjacent in the prime spiral, hence part of a clump and not isolated semiprimes as in A113688.
a(45) = 4*157^2 - 9*157 + 6 = 97189 = 17 * 5717 is the greatest member under 10^5.
-
IsSemiprime:= func; [s: n in [2..150] | IsSemiprime(s) where s is 4*n^2 - 9*n + 6]; // Vincenzo Librandi, Sep 22 2012
-
Select[Table[4 n^2 - 9 n + 6, {n, 140}], PrimeOmega[#] == 2 &] (* Vincenzo Librandi, Sep 22 2012 *)
Original entry on oeis.org
86, 298, 371, 1243, 1541, 2426, 2627, 3053, 4258, 5366, 5663, 6281, 6602, 6931, 7613, 8327, 9073, 9458, 10661, 13283, 14702, 15191, 16706, 18293, 18838, 23486, 25361, 26002, 26651, 27973, 28646, 34318, 35063, 36577, 38123, 41311, 43786, 44627
Offset: 1
a(10) = 4*37^2 - 3*37 + 1 = 5366 = 2 * 2683.
a(11) = 4*38^2 - 3*38 + 1 = 5663 = 7 * 809.
a(10) and a(11) are horizontally adjacent in the prime spiral, hence part of a clump and not isolated semiprimes as in A113688.
a(57) = 4*156^2 - 3*156 + 1 = 96877 = 11 * 8807 is the greatest member under 10^5.
-
IsSemiprime:= func; [s: n in [1..120] | IsSemiprime(s) where s is 4*n^2 - 3*n + 1]; // Vincenzo Librandi, Sep 22 2012
-
Select[Table[4*n^2 - 3*n + 1, {n, 150}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 22 2012 *)
Original entry on oeis.org
46, 77, 218, 1073, 1351, 1502, 1661, 2186, 2998, 4193, 4727, 5006, 5293, 5891, 7183, 8603, 10558, 12266, 13631, 14581, 15563, 19811, 20953, 25202, 27806, 29843, 30538, 31241, 32671, 33398, 35627, 37153, 39502, 40301, 46118, 46981, 49618, 56051
Offset: 1
a(5) = 4*18^2 + 3*18 + 1 = 1351 = 7 * 193.
a(6) = 4*19^2 + 3*19 + 1 = 1502 = 2 * 751.
a(7) = 4*20^2 + 3*20 + 1 = 1661 = 11 * 151.
a(5), a(6) and a(7) are vertically adjacent in the semiprime spiral, hence part of a clump and not isolated semiprimes as in A113688. a(11), a(12) and a(13) are another such vertical string of 3 adjacent semiprimes and so is a(26), a(27) and a(28).
a(52) = 4*152^2 + 3*152 + 1 = 92873 = 11 * 8443 is the greatest member under 10^5.
-
IsSemiprime:= func; [s: n in [1..120] | IsSemiprime(s) where s is 4*n^2 + 3*n + 1]; // Vincenzo Librandi, Sep 22 2012
-
Select[Table[4*n^2 + 3*n + 1, {n, 200}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 22 2012 *)
Showing 1-3 of 3 results.
Comments