cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A190615 Expansion of f(x^2) * f(x^3) / (chi(x) * chi(x^6)) in powers of x where f(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 2, -2, 1, -2, 0, -2, 0, 0, 2, 0, 3, -1, 2, -2, 2, -4, 0, 0, 0, 0, 2, 0, 3, 0, 2, -4, 0, -2, 0, -2, 0, 0, 0, 0, 2, -3, 4, -2, 1, -2, 0, -2, 0, 0, 2, 0, 2, -2, 2, -2, 4, -2, 0, 0, 0, 0, 0, 0, 3, 0, 4, -2, 0, -2, 0, -2, 0, 0, 0, 0, 4, -3, 2, -2, 0, -4, 0
Offset: 0

Views

Author

Michael Somos, May 14 2011

Keywords

Comments

Number 63 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + 2*x^2 - 2*x^3 + x^4 - 2*x^5 - 2*x^7 + 2*x^10 + 3*x^12 - x^13 + ...
G.f. = q - q^3 + 2*q^5 - 2*q^7 + q^9 - 2*q^11 - 2*q^15 + 2*q^21 + 3*q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 2 n + 1, KroneckerSymbol[ -6, #] &]]; (* Michael Somos, Jun 09 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x^3] EllipticTheta[ 2, 0, x^2] - EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x^6]) / (2 x^(1/2)), {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2] QPochhammer[ -x^3] / (QPochhammer[ -x, x^2] QPochhammer[ -x^6, x^12]), {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sumdiv( 2*n + 1, d, kronecker( -6, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^4 * eta(x^6 + A)^4 * eta(x^24 + A) / (eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^8 + A) * eta(x^12 + A)^3), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, A = factor(2*n + 1); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, (-1)^e, p%24 < 12, (e+1) * if( p%24 < 6, 1, (-1)^e), (1 + (-1)^e) / 2 )))};

Formula

Expansion of phi(-x^3) * psi(x^4) - x * phi(-x) * psi(x^12) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q) * eta(q^4)^4 * eta(q^6)^4 * eta(q^24) / (eta(q^2)^3 * eta(q^3) * eta(q^8) * eta(q^12)^3) in powers of q.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = (-1)^e, b(p^e) = e+1 if p == 1, 5 (mod 24), b(p^e) = (-1)^e * (e+1) if p == 7, 11 (mod 24), b(p^e) = (1 + (-1)^e)/2 if p == 13, 17, 19, 23 (mod 24).
Euler transform of period 24 sequence [ -1, 2, 0, -2, -1, -1, -1, -1, 0, 2, -1, -2, -1, 2, 0, -1, -1, -1, -1, -2, 0, 2, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = 96^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: Sum_{k>0} Kronecker( 6, k) * q^k / (1 + q^(2*k)) = Sum_{k>=0} a(k) * q^(2*k + 1).
G.f.: Product_{k>0} (1 + (-x)^k) * (1 - (-x^2)^k) * (1 - (-x^3)^k) * (1 + (-x^6)^k).
a(n) = (-1)^n * A129402(n). a(3*n + 1) = -a(n). a(12*n + 6) = a(12*n + 8) = a(12*n + 9) = a(12*n + 11) = 0.
a(12*n) = A113700(n). a(12*n + 2) = 2 * A128583(n). a(12*n + 5) = -2 * A128591(n). - Michael Somos, Jun 09 2015
a(n) = (-1)^floor(n/2) * A128580(n) = (-1)^(n + floor(n/2)) * A134177(n). - Michael Somos, Jul 29 2015
a(3*n) = A260110(n). a(3*n + 2) = 2 * A260118(n). - Michael Somos, Jul 29 2015
a(4*n) = A260308(n). a(4*n + 1) = - A257920(n). a(4*n + 2) = 2 * A259895(n). a(4*n + 3) = -2 * A259896(n). - Michael Somos, Jul 29 2015
a(12*n + 3) = -2 * A260089(n). - Michael Somos, Jul 29 2015

A113701 Members of 3-cycles of permutation A111273.

Original entry on oeis.org

1734, 2312, 4335, 4804, 6005, 7494, 8407, 8994, 9992, 10493, 12548, 13491, 16004, 18244, 18735, 18822, 19268, 20005, 21956, 21959, 22805, 23412, 24026, 24964, 25363, 26076, 27332, 28007, 28902, 30020, 30692, 31205, 31927, 32934, 33167
Offset: 1

Views

Author

Klaus Brockhaus, Nov 08 2005

Keywords

Comments

Trajectory of n under map k -> A111273(k) is periodic with period length 3.
n = A111273(A111273(A111273(n))), n <> A111273(A111273(n)), n <> A111273(n).
Apparently A111273 has infinitely many 3-cycles.
The only k-cycles with k > 3 and terms < 240000 are the 4-cycles (84326,126489,149487,91992) and (94138,98417,135761,141207), the 6-cycle (4,5,15,8,6,7), the 7-cycle (16,17,51,34,35,30,31) and the 13-cycle (28,29,87,58,59,118,119,68,46,47,94,95,48).

Examples

			A111273(7494) = 18735, A111273(18735) = 9992 and A111273(9992) = 7494, hence
7494, 9992 and 18735 are in the sequence.
		

Crossrefs

A113702 Trajectory of 10 under map k -> A111273(k).

Original entry on oeis.org

10, 11, 22, 23, 12, 13, 91, 161, 189, 285, 429, 473, 869, 957, 1437, 2157, 3237, 4857, 7287, 4164, 3470, 4511, 2256, 1464, 1172, 782, 783, 392, 294, 413, 531, 342, 343, 172, 173, 519, 346, 347, 694, 1735, 1388, 926, 927, 464, 248, 166, 167, 84, 70, 71, 36, 37
Offset: 0

Views

Author

Klaus Brockhaus, Nov 08 2005

Keywords

Comments

10 is the smallest number that is not member of a k-cycle with k <=13 of permutation A111273.
Conjecture: Sequence is not periodic.
For the retrograde trajectory of 10 see A113703.

Crossrefs

Programs

  • Maple
    # assuming A111273 is a list, Vector or table
    a113702[0]:= 10:
    for i from 1 do
      t:= traperror(A111273[a113702[i-1]]);
    if not t::integer then break fi;
      a113702[i]:=t
    od:
    seq(a113702[j],j=0..i-1); # Robert Israel, Jan 16 2019

A113703 Retrograde trajectory of 10 under map k -> A111273(k).

Original entry on oeis.org

10, 19, 18, 27, 26, 39, 38, 56, 111, 74, 147, 146, 219, 218, 435, 290, 579, 578, 867, 866, 1299, 1298, 1947, 1121, 589, 341, 186, 371, 265, 105, 69, 45, 44, 55, 54, 80, 159, 53, 52, 103, 102, 152, 208, 415, 414, 459, 458, 915, 365, 145, 115, 114, 132, 176, 351, 350
Offset: 0

Views

Author

Klaus Brockhaus, Nov 08 2005

Keywords

Comments

Also trajectory of 10 under map k -> A113658(k).
Conjecture: Sequence is not periodic.
For the trajectory of 10 under map k -> A111273(k) see A113702.

Crossrefs

Showing 1-4 of 4 results.