A113751 Number of diagonal rectangles with corners on an n X n grid of points.
0, 0, 1, 8, 30, 88, 199, 408, 748, 1280, 2053, 3168, 4666, 6712, 9363, 12728, 16952, 22256, 28681, 36536, 45870, 56936, 69967, 85264, 102860, 123232, 146557, 173128, 203138, 237192, 275243, 318104, 365856, 418912, 477649, 542392, 613406, 691848
Offset: 1
Keywords
Examples
a(3) = 1 because for the 3 X 3 grid, there is only one diagonal rectangle - a square having sides sqrt(2) units. a(4) = 8 because for the 4 X 4 grid, there are 4 squares having sides sqrt(2) units, 2 squares having sides sqrt(5) units and 2 rectangles that are sqrt(2) by 2*sqrt(2) units.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Table[n=m-1; slopes=Union[Flatten[Table[a/b, {b, n}, {a, b, n-b}]]]; rects=0; Do[b=Numerator[slopes[[i]]]; a=Denominator[slopes[[i]]]; base={a+b, a+b}; l=0; While[l++; k=l; While[extent=base+{b, a}(k-1)+{a, b}(l-1); extent[[1]]<=n && extent[[2]]<=n, pos={n+1, n+1}-extent; If[a==b && k==l, fact=1, If[pos[[1]]==pos[[2]], fact=2, fact=4]]; rects=rects+fact*Times@@pos; k++ ]; k>l], {i, Length[slopes]}]; rects, {m, 1, 42}]
Formula
Extensions
a(1) = 0 prepended by Jinyuan Wang, Feb 06 2020
Comments