A113848 a(1) = a(2) = 1, a(n+2) = 2*a(n) + a(n+1)^2.
1, 1, 3, 11, 127, 16151, 260855055, 68045359719085327, 4630170979299719971778494028407039, 21438483297549327871400796194793048411084076762817293736211302918175
Offset: 1
Examples
a(1) = 1 by definition. a(2) = 1 by definition. a(3) = 2*1 + 1^2 = 3. a(4) = 2*1 + 3^2 = 11. a(5) = 2*3 + 11^2 = 127. a(6) = 2*11 + 127^2 = 16151.
Crossrefs
Programs
-
Mathematica
Join[{a=1,b=1},Table[c=1*b^2+2*a;a=b;b=c,{n,10}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *) RecurrenceTable[{a[1]==1, a[2]==1, a[n] == 2*a[n-2] + a[n-1]^2}, a, {n, 1, 10}] (* Vaclav Kotesovec, Dec 18 2014 *)
Formula
a(1) = a(2) = 1, for n>2: a(n) = 2*a(n-2) + a(n-1)^2. a(1) = a(2) = 1, for n>0: a(n+2) = 2*a(n) + a(n+1)^2.
a(n) ~ c^(2^n), where c = 1.163464453662702696843453679269882816346479873363677551158525103156732040997... . - Vaclav Kotesovec, Dec 18 2014
Comments