cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113788 Number of irreducible multiple zeta values at weight n.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7, 8, 11, 13, 17, 21, 28, 34, 45, 56, 73, 92, 120, 151, 197, 250, 324, 414, 537, 687, 892, 1145, 1484, 1911, 2479, 3196, 4148, 5359, 6954, 9000, 11687, 15140, 19672, 25516, 33166, 43065, 56010, 72784, 94716, 123185
Offset: 1

Views

Author

R. J. Mathar, Jan 27 2006

Keywords

Comments

n * a(n) is the Möbius transform of the Perrin sequence A001608.
Number of unlabeled (i.e., defined up to a rotation) maximal independent sets of the n-cycle graph having n isomorphic representatives. - Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007

Crossrefs

Programs

  • Maple
    A113788 := proc(n::integer)
        local resul,d;
        resul :=0;
        for d from 1 to n do
            if n mod d = 0 then
                resul := resul +numtheory[mobius](n/d)*A001608(d);
            fi;
        od:
        RETURN(resul/n);
    end: # R. J. Mathar, Apr 25 2006
  • Mathematica
    (* p = A001608 *) p[n_] := p[n] = p[n-2] + p[n-3]; p[0] = 3; p[1] = 0; p[2] = 2; a[n_] := (1/n)*Sum[MoebiusMu[n/d]*p[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Jul 16 2012, from first formula *)
  • Sage
    z = PowerSeriesRing(ZZ, 'z').gen().O(30)
    r = (1 - (z**2 + z**3))
    F = -z*r.derivative()/r
    [sum(moebius(n//d)*F[d] for d in divisors(n))//n for n in range(1, 24)] # F. Chapoton, Apr 24 2020

Formula

a(n) = (1/n) * Sum_{d|n} mu(n/d)*Perrin(d), where Perrin(d) = A001608 starting with 0, 2, 3, ... .
a(n) = Sum_{d|n} mu(n/d)*A127687(d) = (1/n) * Sum_{d|n} mu(n/d)*A001608(d). - Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007
For p an odd prime, a(p) = Sum_{i=0..floor((p-3)/6)} (A(i)+B(i)-1)!/(A(i)!*B(i)!), where A(i) = (p-3)/2 - 3*i, and B(i) = 1 + 2*i. - Richard Turk, Sep 08 2015
a(n) ~ A060006^n / n. - Vaclav Kotesovec, Oct 09 2019