cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A001037 Number of degree-n irreducible polynomials over GF(2); number of n-bead necklaces with beads of 2 colors when turning over is not allowed and with primitive period n; number of binary Lyndon words of length n.

Original entry on oeis.org

1, 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594, 52377, 99858, 190557, 364722, 698870, 1342176, 2580795, 4971008, 9586395, 18512790, 35790267, 69273666, 134215680, 260300986, 505286415, 981706806, 1908866960, 3714566310, 7233615333, 14096302710, 27487764474
Offset: 0

Views

Author

Keywords

Comments

Also dimensions of free Lie algebras - see A059966, which is essentially the same sequence.
This sequence also represents the number N of cycles of length L in a digraph under x^2 seen modulo a Mersenne prime M_q=2^q-1. This number does not depend on q and L is any divisor of q-1. See Theorem 5 and Corollary 3 of the Shallit and Vasiga paper: N=sum(eulerphi(d)/order(d,2)) where d is a divisor of 2^(q-1)-1 such that order(d,2)=L. - Tony Reix, Nov 17 2005
Except for a(0) = 1, Bau-Sen Du's [1985/2007] Table 1, p. 6, has this sequence as the 7th (rightmost) column. Other columns of the table include (but are not identified as) A006206-A006208. - Jonathan Vos Post, Jun 18 2007
"Number of binary Lyndon words" means: number of binary strings inequivalent modulo rotation (cyclic permutation) of the digits and not having a period smaller than n. This provides a link to A103314, since these strings correspond to the inequivalent zero-sum subsets of U_m (m-th roots of unity) obtained by taking the union of U_n (n|m) with 0 or more U_d (n | d, d | m) multiplied by some power of exp(i 2Pi/n) to make them mutually disjoint. (But not all zero-sum subsets of U_m are of that form.) - M. F. Hasler, Jan 14 2007
Also the number of dynamical cycles of period n of a threshold Boolean automata network which is a quasi-minimal positive circuit of size a multiple of n and which is updated in parallel. - Mathilde Noual (mathilde.noual(AT)ens-lyon.fr), Feb 25 2009
Also, the number of periodic points with (minimal) period n in the iteration of the tent map f(x):=2min{x,1-x} on the unit interval. - Pietro Majer, Sep 22 2009
Number of distinct cycles of minimal period n in a shift dynamical system associated with a totally disconnected hyperbolic iterated function system (see Barnsley link). - Michel Marcus, Oct 06 2013
From Jean-Christophe Hervé, Oct 26 2014: (Start)
For n > 0, a(n) is also the number of orbits of size n of the transform associated to the Kolakoski sequence A000002 (and this is true for any map with 2^n periodic points of period n). The Kolakoski transform changes a sequence of 1's and 2's by the sequence of the lengths of its runs. The Kolakoski sequence is one of the two fixed points of this transform, the other being the same sequence without the initial term. A025142 and A025143 are the periodic points of the orbit of size 2. A027375(n) = n*a(n) gives the number of periodic points of minimal period n.
For n > 1, this sequence is equal to A059966 and to A060477, and for n = 1, a(1) = A059966(1)+1 = A060477(1)-1; this because the n-th term of all 3 sequences is equal to (1/n)*sum_{d|n} mu(n/d)*(2^d+e), with e = -1/0/1 for resp. A059966/this sequence/A060477, and sum_{d|n} mu(n/d) equals 1 for n = 1 and 0 for all n > 1. (End)
Warning: A000031 and A001037 are easily confused, since they have similar formulas.
From Petros Hadjicostas, Jul 14 2020: (Start)
Following Kam Cheong Au (2020), let d(w,N) be the dimension of the Q-span of weight w and level N of colored multiple zeta values (CMZV). Here Q are the rational numbers.
Deligne's bound says that d(w,N) <= D(w,N), where 1 + Sum_{w >= 1} D(w,N)*t^w = (1 - a*t + b*t^2)^(-1) when N >= 3, where a = phi(N)/2 + omega(N) and b = omega(N) - 1 (with omega(N) = A001221(N) being the number of distinct primes of N).
For N = 3, a = phi(3)/2 + omega(3) = 2/2 + 1 = 2 and b = omega(3) - 1 = 0. It follows that D(w, N=3) = A000079(w) = 2^w.
For some reason, Kam Cheong Au (2020) assumes Deligne's bound is tight, i.e., d(w,N) = D(w,N). He sets Sum_{w >= 1} c(w,N)*t^w = log(1 + Sum_{w >= 1} d(w,N)*t^w) = log(1 + Sum_{w >= 1} D(w,N)*t^w) = -log(1 - a*t + b*t^2) for N >= 3.
For N = 3, we get that c(w, N=3) = A000079(w)/w = 2^w/w.
He defines d*(w,N) = Sum_{k | w} (mu(k)/k)*c(w/k,N) to be the "number of primitive constants of weight w and level N". (Using the terminology of A113788, we may perhaps call d*(w,N) the number of irreducible colored multiple zeta values at weight w and level N.)
Using standard techniques of the theory of g.f.'s, we can prove that Sum_{w >= 1} d*(w,N)*t^w = Sum_{s >= 1} (mu(s)/s) Sum_{k >= 1} c(k,N)*(t^s)^k = -Sum_{s >= 1} (mu(s)/s)*log(1 - a*t^s + b*t^(2*s)).
For N = 3, we saw that a = 2 and b = 0, and hence d*(w, N=3) = a(w) = Sum_{k | w} (mu(k)/k) * 2^(w/k) / (w/k) = (1/w) * Sum_{k | w} mu(k) * 2^(w/k) for w >= 1. See Table 1 on p. 6 in Kam Cheong Au (2020). (End)

Examples

			Binary strings (Lyndon words, cf. A102659):
a(0) = 1 = #{ "" },
a(1) = 2 = #{ "0", "1" },
a(2) = 1 = #{ "01" },
a(3) = 2 = #{ "001", "011" },
a(4) = 3 = #{ "0001", "0011", "0111" },
a(5) = 6 = #{ "00001", "00011", "00101", "00111", "01011", "01111" }.
		

References

  • Michael F. Barnsley, Fractals Everywhere, Academic Press, San Diego, 1988, page 171, Lemma 3.
  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • E. L. Blanton, Jr., S. P. Hurd and J. S. McCranie. On the digraph defined by squaring mod m, when m has primitive roots. Congr. Numer. 82 (1991), 167-177.
  • P. J. Freyd and A. Scedrov, Categories, Allegories, North-Holland, Amsterdam, 1990. See 1.925.
  • M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983, pp. 65, 79.
  • Robert M. May, "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019
  • Guy Melançon, Factorizing infinite words using Maple, MapleTech Journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.
  • M. R. Nester, (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in entries N0046 and N0287).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A074650.
Row sums of A051168, which gives the number of Lyndon words with fixed number of zeros and ones.
Euler transform is A000079.
See A058943 and A102569 for initial terms. See also A058947, A011260, A059966.
Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.
Cf. A000031 (n-bead necklaces but may have period dividing n), A014580, A046211, A046209, A006206-A006208, A038063, A060477, A103314.
See also A102659 for the list of binary Lyndon words themselves.

Programs

  • Haskell
    a001037 0 = 1
    a001037 n = (sum $ map (\d -> (a000079 d) * a008683 (n `div` d)) $
                           a027750_row n) `div` n
    -- Reinhard Zumkeller, Feb 01 2013
    
  • Maple
    with(numtheory): A001037 := proc(n) local a,d; if n = 0 then RETURN(1); else a := 0: for d in divisors(n) do a := a+mobius(n/d)*2^d; od: RETURN(a/n); fi; end;
  • Mathematica
    f[n_] := Block[{d = Divisors@ n}, Plus @@ (MoebiusMu[n/d]*2^d/n)]; Array[f, 32]
  • PARI
    A001037(n)=if(n>1,sumdiv(n,d,moebius(d)*2^(n/d))/n,n+1) \\ Edited by M. F. Hasler, Jan 11 2016
    
  • PARI
    {a(n)=polcoeff(1-sum(k=1,n,moebius(k)/k*log(1-2*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Oct 13 2010
    
  • PARI
    a(n)=if(n>1,my(s);forstep(i=2^n+1,2^(n+1),2,s+=polisirreducible(Mod(1,2) * Pol(binary(i))));s,n+1) \\ Charles R Greathouse IV, Jan 26 2012
    
  • Python
    from sympy import divisors, mobius
    def a(n): return sum(mobius(d) * 2**(n//d) for d in divisors(n))/n if n>1 else n + 1 # Indranil Ghosh, Apr 26 2017

Formula

For n >= 1:
a(n) = (1/n)*Sum_{d | n} mu(n/d)*2^d.
A000031(n) = Sum_{d | n} a(d).
2^n = Sum_{d | n} d*a(d).
a(n) = A027375(n)/n.
a(n) = A000048(n) + A051841(n).
For n > 1, a(n) = A059966(n) = A060477(n).
G.f.: 1 - Sum_{n >= 1} moebius(n)*log(1 - 2*x^n)/n, where moebius(n) = A008683(n). - Paul D. Hanna, Oct 13 2010
From Richard L. Ollerton, May 10 2021: (Start)
For n >= 1:
a(n) = (1/n)*Sum_{k=1..n} mu(gcd(n,k))*2^(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = (1/n)*Sum_{k=1..n} mu(n/gcd(n,k))*2^gcd(n,k)/phi(n/gcd(n,k)). (End)
a(n) ~ 2^n / n. - Vaclav Kotesovec, Aug 11 2021

Extensions

Revised by N. J. A. Sloane, Jun 10 2012

A006206 Number of aperiodic binary necklaces of length n with no subsequence 00, excluding the necklace "0".

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 5, 8, 11, 18, 25, 40, 58, 90, 135, 210, 316, 492, 750, 1164, 1791, 2786, 4305, 6710, 10420, 16264, 25350, 39650, 61967, 97108, 152145, 238818, 374955, 589520, 927200, 1459960, 2299854, 3626200, 5720274, 9030450, 14263078
Offset: 1

Views

Author

Keywords

Comments

Bau-Sen Du (1985/1989)'s Table 1 has this sequence, denoted A_{n,1}, as the second column. - Jonathan Vos Post, Jun 18 2007

Examples

			Necklaces are: 1, 10, 110, 1110; 11110, 11010, 111110, 111010, ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 499.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006207 (A_{n,2}), A006208 (A_{n,3}), A006209 (A_{n,4}), A130628 (A_{n,5}), A208092 (A_{n,6}), A006210 (D_{n,2}), A006211 (D_{n,3}), A094392.
Cf. A001461 (partial sums), A000045, A008683, A027750.
Cf. A125951 and A113788 for similar sequences.

Programs

  • Haskell
    a006206 n = sum (map f $ a027750_row n) `div` n where
       f d = a008683 (n `div` d) * (a000045 (d - 1) + a000045 (d + 1))
    -- Reinhard Zumkeller, Jun 01 2013
    
  • Maple
    with(numtheory): with(combinat):
    A006206 := proc(n) local sum; sum := 0; for d in divisors(n) do sum := sum + mobius(n/d)*(fibonacci(d+1)+fibonacci(d-1)) end do; sum/n; end proc:
  • Mathematica
    a[n_] := Total[(MoebiusMu[n/#]*(Fibonacci[#+1] + Fibonacci[#-1]) & ) /@ Divisors[n]]/n;
    (* or *) a[n_] := Sum[LucasL[k]*MoebiusMu[n/k], {k, Divisors[n]}]/n; Table[a[n], {n,100}] (* Jean-François Alcover, Jul 19 2011, after given formulas *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1)))/n)
    
  • Sage
    z = PowerSeriesRing(ZZ, 'z').gen().O(30)
    r = (1 - (z + z**2))
    F = -z*r.derivative()/r
    [sum(moebius(n//d)*F[d] for d in divisors(n))//n for n in range(1, 24)] # F. Chapoton, Apr 24 2020

Formula

Euler transform is Fibonacci(n+1): 1/((1 - x) * (1 - x^2) * (1 - x^3) * (1 - x^4) * (1 - x^5)^2 * (1 - x^6)^2 * ...) = 1/(Product_{n >= 1} (1 - x^n)^a(n)) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + ...
Coefficients of power series of natural logarithm of the infinite product Product_{n>=1} (1 - x^n - x^(2*n))^(-mu(n)/n), where mu(n) is the Moebius function. This is related to Fibonacci sequence since 1/(1 - x^n - x^(2*n)) expands to a power series whose terms are Fibonacci numbers.
a(n) = (1/n) * Sum_{d|n} mu(n/d) * (Fibonacci(d-1) + Fibonacci(d+1)) = (1/n) * Sum_{d|n} mu(n/d) * Lucas(d). Hence Lucas(n) = Sum_{d|n} d*a(d).
a(n) = round((1/n) * Sum_{d|n} mu(d)*phi^(n/d)), n > 2. - David Broadhurst [Formula corrected by Jason Yuen, Dec 29 2024]
G.f.: Sum_{n >= 1} -mu(n) * log(1 - x^n - x^(2*n))/n.
a(n) = (1/n) * Sum_{d|n} mu(d) * A001610(n/d - 1), n > 1. - R. J. Mathar, Mar 07 2009
For n > 2, a(n) = A060280(n) = A031367(n)/n.

A032170 "CHK" (necklace, identity, unlabeled) transform of 1, 2, 3, 4, ...

Original entry on oeis.org

1, 2, 5, 10, 24, 50, 120, 270, 640, 1500, 3600, 8610, 20880, 50700, 124024, 304290, 750120, 1854400, 4600200, 11440548, 28527320, 71289000, 178526880, 447910470, 1125750120, 2833885800, 7144449920, 18036373140, 45591631800, 115381697740, 292329067800
Offset: 1

Views

Author

Keywords

Comments

Apparently, for n > 2, the same as A072337. - Ralf Stephan, Feb 01 2004
a(n) is the number of prime period-n periodic orbits of Arnold's cat map. - Bruce Boghosian, Apr 26 2009
From Petros Hadjicostas, Nov 17 2017: (Start)
A first proof of the g.f., given below, can be obtained using the first of Vladeta Jovovic's formulae. If b(n) = A004146(n), then B(x) = Sum_{n >= 1} b(n)*x^n = x*(1 + x)/((1 - x)*(1 - 3*x + x^2)) (see the documentation for sequence A004146). From Jovovich's first formula, A(x) = Sum_{n >= 1} a(n)*x^n = Sum_{n >= 1} (1/n)*Sum_{d | n} mu(d)*b(n/d)*x^n. Letting m = n/d, we get A(x) = Sum_{d >= 1} (mu(d)/d)*Sum_{m >= 1} b(m)*(x^d)^m/m = Sum_{d >= 1} (mu(d)/d)*f(x^d), where f(y) = Sum_{m >= 1} b(m)*y^m/m = int(B(w)/w, w = 0..y) = int((1 + w)/((1 - w)*(1 - 3*w + w^2)), w = 0..y) = log((1 - y)^2/(1 - 3*y + y^2)) for |y| < (3 - sqrt(5))/2.
A second proof of the g.f. can be obtained using C. G. Bower's definition of the CHK transform of a sequence (e(n): n>=1) with g.f. E(x) (see the links below). If (c_k(n): n >= 1) = CHK_k(e(n): n >= 1), then (c_k(n): n >= 1) = (1/k)*(MOEBIUS*AIK)k (e_n: n >= 1) = (1/k)*Sum{d | gcd(n,k)} mu(d)*AIK_{k/d}(e(n/d): n multiple of d), where the * between MOEBIUS and AIK denotes Dirichlet convolution and (d_k(n): n >= 1) = AIK_k(e(n): n >= 1) has g.f. E(x)^k. (There is a typo in the given definition of CHK in the link.)
If C(x) is the g.f. of CHK(e(n): n >= 1) = Sum_{k = 1..n} CHK_k(e(n): n >= 1), then C(x) = Sum_{n>=1} Sum_{k = 1..n} c_k(n)*x^n = Sum_{k >= 1} (1/k) Sum_{n >= k} Sum_{d | gcd(n,k)} mu(d)*d_{k/d}(n/d)*x^n. Letting m = n/d and s = k/d and using the fact that E(0) = 0, we get C(x) = Sum_{d >= 1} (mu(d)/d)*Sum_{s >= 1} (1/s)*Sum_{m >= s} d_s(m)*(x^d)^m = Sum_{d >= 1} (mu(d)/d)*Sum_{s >= 1} E(x^d)^s. Thus, C(x) = -Sum_{d >= 1} (mu(d)/d)*log(1 - E(x^d)).
For the sequence (e(n): n >= 1) = (n: n >= 1), we have E(x) = Sum_{n>=1} n*x^n = x/(1 - x)^2, and thus A(x) = C(x) = -Sum_{d >= 1} (mu(d)/d)*log(1 - x/(1-x)^2), from which we can easily get the g.f. given in the formula section.
Apparently, for this sequence and for sequences A032165, A032166, A032167, the author assumes that C(0) = 0 (i.e., he assumes the CHK transform has no constant term), while for sequences A032164, A108529, and possibly others, he assumes that the CHK transform starts with the constant term 1 (i.e., he assumes C(x) = 1 - Sum_{d >= 1} (mu(d)/d)*log(1 - E(x^d))). (End)
From Petros Hadjicostas, Jul 13 2020: (Start)
We elaborate further on Michel Marcus's claim below. Consider his sequence (b(n): n >= 1) with b(1) = 3 and b(n) = a(n) for n >= 2.
Using the identity -Sum_{k >= 1} (mu(k)/k)*log(1 - x^k) = x for |x| < 1 and the g.f. of (a(n): n >= 1) below, we see that Sum_{n >= 1} b(n)*x^n = 3*x - a(1)*x + Sum_{n >= 1} a(n)*x^n = 2*x + Sum_{k >= 1} (mu(k)/k)*(2*log(1 - x^k) - log(1 - 3*x^k + x^(2*k))) = -Sum_{k >= 1} (mu(k)/k)*log(1 - 3*x^k + x^(2*k)).
Following Kam Cheong Au (2020), let d(w,N) be the dimension of the Q-span of weight w and level N of colored multiple zeta values (CMZV). Here Q are the rational numbers.
Deligne's bound says that d(w,N) <= D(w,N), where 1 + Sum_{w >= 1} D(w,N)*t^w = (1 - a*t + b*t^2)^(-1) when N >= 3, where a = phi(N)/2 + omega(N) and b = omega(N) - 1 (with omega(N) being the number of distinct primes of N).
For N = 6, a = phi(6)/2 + omega(6) = 2/2 + 2 = 3 and b = omega(6) - 1 = 1. It follows that D(w, N=6) = A001906(w+1) = Fibonacci(2*(w+1)).
For some reason, Kam Cheong Au (2020) assumes Deligne's bound is tight, i.e., d(w,N) = D(w,N). He sets Sum_{w >= 1} c(w,N)*t^w = log(1 + Sum_{w >= 1} d(w,N)*t^w) = log(1 + Sum_{w >= 1} D(w,N)*t^w) = -log(1 - a*t + b*t^2) for N >= 3.
For N = 6, we get that c(w, N=6) = A005248(w)/w.
He defines d*(w,N) = Sum_{k | w} (mu(k)/k)*c(w/k,N) to be the "number of primitive constants of weight w and level N". (Using the terminology of A113788, we may perhaps call d*(w,N) the number of irreducible colored multiple zeta values at weight w and level N.)
Using standard techniques of the theory of g.f.'s, we can prove that Sum_{w >= 1} d*(w,N)*t^w = Sum_{s >= 1} (mu(s)/s) Sum_{k >= 1} c(k,N)*(t^s)^k = -Sum_{s >= 1} (mu(s)/s)*log(1 - a*t^s + b*t^(2*s)).
For N = 6, we saw that a = 3 and b = 1, and hence d*(w, N=6) = b(w) for w >= 1 (as claimed by Michel Marcus below). See Table 1 on p. 6 in Kam Cheong Au (2020). (End)

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[n/#] (LucasL[2 #] - 2) &]/n, {n, 31}] (* Michael De Vlieger, Nov 18 2017 *)

Formula

a(n) = (1/n)*Sum_{d | n} mu(n/d)*A004146(d). - Vladeta Jovovic, Feb 15 2003
Inverse EULER transform of Fibonacci(2*n). - Vladeta Jovovic, May 04 2006
G.f.: Sum_{n >= 1} (mu(n)/n)*f(x^n), where f(y) = log((1 - y)^2/(1 - 3*y + y^2)). - Petros Hadjicostas, Nov 17 2017
It appears that the sequence b(1) = 3, b(n) = a(n) for n >= 2 is related to the rational sequence (c(w, N=6): w >= 1) = (A005248(w)/w: w >= 1) whose g.f. is log(1/(1 - a*t + b*t^2)), where a = phi(N)/2 + omega(N) and b = omega(N) - 1 when N = 6, where phi is A000010 and omega is A001221. See Kam Cheong Au (2020). - Michel Marcus, Jul 13 2020 [Edited by Petros Hadjicostas, Jul 13 2020]

A127687 Number of unlabeled maximal independent sets in the n-cycle graph.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 4, 3, 5, 6, 7, 7, 11, 11, 16, 19, 24, 28, 39, 46, 60, 75, 97, 120, 159, 197, 257, 327, 422, 539, 700, 892, 1157, 1488, 1928, 2479, 3219, 4148, 5383, 6961, 9029, 11687, 15184, 19673, 25564, 33174, 43125, 56010, 72868, 94719, 123283
Offset: 1

Views

Author

Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007

Keywords

Comments

Number of unlabeled (i.e., defined up to a rotation) maximal independent sets in the n-cycle graph. Also: Number of cyclic compositions of n in which each term is either 2 or 3.
(a(n)*n - A001608(n)) mod 2 is a binary sequence of period 14: [0,0,0,0,0,1,0,0,0,1,0,1,0,1]. - Richard Turk, Aug 25 2017

Crossrefs

Programs

  • Maple
    with(numtheory):
    perrin:=proc(n) option remember: if n=0 then 3 elif n=1 then 0 elif n=2 then 2 else perrin(n-2)+perrin(n-3) fi end:
    a:=proc(n) local d,N:d:=divisors(n);N:=nops(d):
    add(phi(n/d[k])*perrin(d[k]),k=1..N)/n end:
    seq(a(n),n=1..50);
    # Robert FERREOL, Apr 10 2024
  • Mathematica
    (* p = A001608 *) p[n_] := p[n] = p[n - 2] + p[n - 3]; p[0] = 3; p[1] = 0; p[2] = 2; A113788[n_] := (1/n)*Sum[MoebiusMu[n/d]*p[d], {d, Divisors[n]}]; a[n_] := Sum[A113788[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Jul 16 2012, from formula *)
  • PARI
    N = 66;  x = 'x + O('x^N);
    f(x) = x^2+x^3;
    gf = 'c0 + sum(n=1,N, eulerphi(n)/n*log(1/(1-f(x^n)))  );
    v = Vec(gf); v[1]-='c0; v  /* includes a(0)=0 */
    /* Joerg Arndt, Jan 21 2013 */

Formula

a(n) = Sum_{d|n} A113788(d) = 2 * A127685(n) - A127682(n) = (1/n)*(Sum_{d|n} A000010(n/d) * A001608(d)).
G.f.: Sum_{k>=1} (phi(k)/k) * log( 1/(1-B(x^k)) ) where B(x) = x^2 + x^3. - Joerg Arndt, Jan 21 2013

A127683 Number of non-isomorphic (i.e., defined up to a rotation and a reflection) maximal independent sets of the n-cycle graph having 2n isomorphic representatives.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 2, 5, 4, 8, 9, 15, 16, 27, 30, 46, 54, 80, 96, 139, 167, 237, 292, 403, 501, 687, 862, 1164, 1472, 1974, 2512, 3347, 4274, 5668, 7275, 9604, 12359, 16278, 21006, 27597, 35690, 46819, 60663, 79478, 103128
Offset: 1

Views

Author

Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007

Keywords

Crossrefs

Formula

a(n) = (1/2)*(A113788(n) - Sum_{d|n} mu(n/d)*A127682(d)).

A125951 Exponents f(n), n = 1, 2, ..., in the infinite product 1 - z - z^2 - z^3 = Product_{n>=1} (1-z^n)^f(n).

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 10, 15, 26, 42, 74, 121, 212, 357, 620, 1064, 1856, 3209, 5618, 9794, 17192, 30153, 53114, 93554, 165308, 292250, 517802, 918207, 1630932, 2899434, 5161442, 9196168, 16402764, 29281168, 52319364, 93555601, 167427844
Offset: 1

Views

Author

Barry Brent (barrybrent(AT)member.ams.org), Feb 04 2007

Keywords

Comments

Let w = z + z^2 + z^3. Then 1 - z - z^2 - z^3 = 1 - 1w = (by the cyclotomic identity) Product_{n>=1} (1-w^n)^P(1,n), where P is the necklace polynomial. P is a counting function. Is f also a counting function?

Examples

			f(1) = f(2) = 1 because 1 - z - z^2 - z^3 = (1-z)^1 *(1-z^2)^1 * ....
		

References

  • T. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, Theorem 14.8.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 500.

Crossrefs

Programs

  • Sage
    z = PowerSeriesRing(ZZ, 'z').gen().O(30)
    r = (1 - (z + z**2 + z**3))
    F = -z*r.derivative()/r
    [sum(moebius(n//d)*F[d] for d in divisors(n))//n for n in range(1,24)]

Formula

Let r(n) be the coefficient of z^n in 1 - z - z^2 - z^3, so that r(0) = 1 and r(n) = 0 for n>3. Let F(k) satisfy the recurrence n r(n) + sum_{k=1}^n r(n-k)F(k) = 0. Let mu be the usual Möbius function. Then f(n) = (1/n) sum_{d|n} mu(n/d) F(d) (so that n*f(n) is the Möbius inverse of F(n).)

A018243 Inverse Euler transform of A000931.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7, 8, 11, 13, 17, 21, 28, 34, 45, 56, 73, 92, 120, 151, 197, 250, 324, 414, 537, 687, 892, 1145, 1484, 1911, 2479, 3196, 4148, 5359, 6954, 9000, 11687, 15140, 19672, 25516, 33166, 43065, 56010, 72784, 94716, 123185, 160380, 208740, 271913, 354123, 461529, 601436, 784209, 1022505, 1333856
Offset: 1

Views

Author

Keywords

Examples

			x^3 + x^5 + x^7 + x^8 + x^9 + x^10 + 2*x^11 + 2*x^12 + 3*x^13 + 3*x^14 + ...
		

Crossrefs

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(A000931):
    seq(a(n), n = 1..65); # Peter Luschny, Nov 21 2022
  • Mathematica
    a[n_] := (1/n)*Sum[ MoebiusMu[n/d]*Floor[ Re[ N[ RootSum[ -1-#+#^3&, #^d& ]]]] , {d, Divisors[n]}]; a[2]=0; Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Oct 05 2012, after Michael Somos *)
  • Sage
    z = PowerSeriesRing(ZZ, 'z').gen().O(30)
    r = (1 - (z**2 + z**3))/(1 - z**2)
    F = -z*r.derivative()/r
    [sum(moebius(n//d)*F[d] for d in divisors(n))//n for n in range(1, 24)] # F. Chapoton, Apr 25 2020

Formula

a(n) = A113788(n) unless n=2. - Michael Somos, Apr 06 2012
Reciprocal of g.f. of A000931 = (1 - x^2 - x^3) / (1 - x^2) = 1 - x^3 - x^5 - x^7 - x^9 - ... = Product_{k>0} (1 - x^k)^a(n). - Michael Somos, Jul 17 2012
a(n) ~ A060006^n / n. - Vaclav Kotesovec, Oct 09 2019

Extensions

More terms from Joerg Arndt, Jul 18 2012
Showing 1-7 of 7 results.