A001461 Partial sums of A006206.
1, 2, 3, 4, 6, 8, 12, 17, 25, 36, 54, 79, 119, 177, 267, 402, 612, 928, 1420, 2170, 3334, 5125, 7911, 12216, 18926, 29346, 45610, 70960, 110610, 172577, 269685, 421830, 660648, 1035603, 1625123
Offset: 1
Links
- James Spahlinger, Table of n, a(n) for n = 1..1000
- D. J. Broadhurst, On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory, arXiv:hep-th/9604128, 1996.
Programs
-
Haskell
a001461 n = a001461_list !! (n-1) a001461_list = scanl1 (+) a006206_list -- Reinhard Zumkeller, Jun 01 2013
-
Maple
b := proc(n) local sum; sum := 0; for d in divisors(n) do sum := sum + mobius(n/d)*(fibonacci(d+1)+fibonacci(d-1)) od; RETURN(sum/n); end; A001461 := proc(n) local i; add(b(i),i=1..n); end;
-
Mathematica
b[n_] := Sum[MoebiusMu[n/d] (Fibonacci[d + 1] + Fibonacci[d - 1]), {d, Divisors[n]}]/n; Accumulate[Table[b[n], {n, 35}]] (* Jean-François Alcover, Dec 02 2011 *)
-
Sage
def a(n): return sum((fibonacci(d + 1) + fibonacci(d - 1)) * moebius(n // d) for d in divisors(n)) // n def b(n): return sum(a(i) for i in range(1, n + 1))
Comments