A203803
G.f.: exp( Sum_{n>=1} A000204(n)^3 * x^n/n ) where A000204 is the Lucas numbers.
Original entry on oeis.org
1, 1, 14, 35, 205, 744, 3414, 13926, 60060, 252330, 1072902, 4537272, 19234463, 81452015, 345084970, 1461714517, 6192083147, 26229794928, 111111714300, 470675847900, 1993816532280, 8445939457380, 35777578796220, 151556246864400, 642002579853325, 2719566542567917
Offset: 0
G.f.: A(x) = 1 + x + 14*x^2 + 35*x^3 + 205*x^4 + 744*x^5 + 3414*x^6 +...
where
log(A(x)) = x + 3^3*x^2/2 + 4^3*x^3/3 + 7^3*x^4/4 + 11^3*x^5/5 + 18^3*x^6/6 + 29^3*x^7/7 + 47^3*x^8/8 +...+ Lucas(n)^3*x^n/n +...
- G. C. Greubel, Table of n, a(n) for n = 0..1500
- Index entries for linear recurrences with constant coefficients, signature (1,13,8,-20,-8,13,-1,-1).
-
CoefficientList[Series[1/((1 + x - x^2)^3*(1 - 4*x - x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 24 2017 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^3*x^k/k)+x*O(x^n)), n)}
-
{a(n,m=1)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}
A203854
a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^3, where Lucas(n) = A000204(n).
Original entry on oeis.org
1, 13, 21, 79, 266, 957, 3484, 12935, 48768, 185951, 716418, 2781675, 10878520, 42789478, 169181010, 671866245, 2678678730, 10716651456, 43007270292, 173072549610, 698235680844, 2823329210391, 11439823946306, 46440709210035, 188856966693230, 769241291729020
Offset: 1
G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^13 * (1-4*x^3-x^6)^21 * (1-7*x^4+x^8)^79 * (1-11*x^5-x^10)^266 * (1-18*x^6+x^12)^957 *...* (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) *...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^4 * x^n/n ) = g.f. of A203804:
F(x) = 1 + x + 41*x^2 + 126*x^3 + 1526*x^4 + 7854*x^5 + 63629*x^6 +...
where
log(F(x)) = x + 3^4*x^2/2 + 4^4*x^3/3 + 7^4*x^4/4 + 11^4*x^5/5 + 18^4*x^6/6 + 29^4*x^7/7 + 47^4*x^8/8 +...+ Lucas(n)^4*x^n/n +...
-
a[n_] := 1/n DivisorSum[n, MoebiusMu[n/#] LucasL[#]^3&]; Array[a, 30] (* Jean-François Alcover, Dec 04 2015 *)
-
{a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^3)/n)}
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=local(F=exp(sum(m=1, n, Lucas(m)^4*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}
A203855
a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^4, where Lucas(n) = A000204(n).
Original entry on oeis.org
1, 40, 85, 580, 2928, 17440, 101040, 609660, 3706880, 22887192, 142567200, 895855380, 5667708960, 36072949560, 230763023408, 1482822818820, 9565561745040, 61920953016320, 402074969960400, 2618069854211784, 17090016552803440, 111812320834030800
Offset: 1
G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^40 * (1-4*x^3-x^6)^85 *
(1-7*x^4+x^8)^580 * (1-11*x^5-x^10)^2928 * (1-18*x^6+x^12)^17440 *...* (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) *...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^5 * x^n/n ) = g.f. of A203805:
F(x) = 1 + x + 122*x^2 + 463*x^3 + 11985*x^4 + 85456*x^5 +...
where
log(F(x)) = x + 3^5*x^2/2 + 4^5*x^3/3 + 7^5*x^4/4 + 11^5*x^5/5 + 18^5*x^6/6 + 29^5*x^7/7 + 47^5*x^8/8 +...+ Lucas(n)^5*x^n/n +...
-
a[n_] := 1/n DivisorSum[n, MoebiusMu[n/#] LucasL[#]^4 &]; Array[a, 30] (* Jean-François Alcover, Dec 04 2015 *)
-
{a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^4)/n)}
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=local(F=exp(sum(m=1, n, Lucas(m)^5*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}
A203856
a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^5, where Lucas(n) = A000204(n).
Original entry on oeis.org
1, 121, 341, 4141, 32210, 314717, 2930164, 28666025, 281724928, 2815289555, 28370872818, 288468152625, 2952876368200, 30409537607218, 314760765272250, 3272590619892675, 34158620991538050, 357779277130203136, 3758998894159780092, 39603542856374168550
Offset: 1
G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^121 * (1-4*x^3-x^6)^341 * (1-7*x^4+x^8)^4141 * (1-11*x^5-x^10)^32210 * (1-18*x^6+x^12)^314717 * ... * (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) * ...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^6 * x^n/n ) = g.f. of A203806:
F(x) = 1 + x + 365*x^2 + 1730*x^3 + 97390*x^4 + 948562*x^5 + ...
where
log(F(x)) = x + 3^6*x^2/2 + 4^6*x^3/3 + 7^6*x^4/4 + 11^6*x^5/5 + 18^6*x^6/6 + 29^6*x^7/7 + 47^6*x^8/8 + ... + Lucas(n)^6*x^n/n + ...
-
a[n_] := DivisorSum[n, MoebiusMu[n/#]*LucasL[#]^5&]/n; Array[a, 20] (* Jean-François Alcover, Dec 07 2015 *)
-
{a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^5)/n)}
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=local(F=exp(sum(m=1, n, Lucas(m)^6*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}
A203857
a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^6, where Lucas(n) = A000204(n).
Original entry on oeis.org
1, 364, 1365, 29230, 354312, 5667900, 84974760, 1347387210, 21411102720, 346282421940, 5645803690800, 92886793449030, 1538448587832240, 25635241395476100, 429333683845968552, 7222607529064709670, 121980435560782376760, 2067248664062116147200
Offset: 1
G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^364 * (1-4*x^3-x^6)^1365 * (1-7*x^4+x^8)^29230 * (1-11*x^5-x^10)^354312 * (1-18*x^6+x^12)^5667900 * ... * (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) * ...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^7 * x^n/n ) = g.f. of A203807:
F(x) = 1 + x + 1094*x^2 + 6555*x^3 + 809765*x^4 + 10676072*x^5 + ...
where log(F(x)) = x + 3^7*x^2/2 + 4^7*x^3/3 + 7^7*x^4/4 + 11^7*x^5/5 + 18^7*x^6/6 + 29^7*x^7/7 + 47^7*x^8/8 + ... + Lucas(n)^7*x^n/n + ...
-
a[n_] := DivisorSum[n, MoebiusMu[n/#]*LucasL[#]^6&]/n; Array[a, 18] (* Jean-François Alcover, Dec 07 2015 *)
-
{a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^6)/n)}
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=local(F=exp(sum(m=1, n, Lucas(m)^7*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}
A203858
a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^7, where Lucas(n) = A000204(n).
Original entry on oeis.org
1, 1093, 5461, 205339, 3897434, 102033577, 2464268044, 63327787115, 1627243839488, 42592757748839, 1123514934469218, 29909548355299575, 801531714260597080, 21610508530971123358, 585611144766061271010, 15940294818101008311105, 435592135387553867410170
Offset: 1
G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^1093 * (1-4*x^3-x^6)^5461 * (1-7*x^4+x^8)^205339 * (1-11*x^5-x^10)^3897434 * (1-18*x^6+x^12)^102033577 * ... * (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) * ...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^8 * x^n/n ) = g.f. of A203808:
F(x) = 1 + x + 3281*x^2 + 25126*x^3 + 6845526*x^4 + 121368902*x^5 + ...
where
log(F(x)) = x + 3^8*x^2/2 + 4^8*x^3/3 + 7^8*x^4/4 + 11^8*x^5/5 + 18^8*x^6/6 + 29^8*x^7/7 + 47^8*x^8/8 + ... + Lucas(n)^8*x^n/n + ...
-
a[n_] := DivisorSum[n, MoebiusMu[n/#]*LucasL[#]^7 &]/n; Array[a, 50] (* G. C. Greubel, Mar 05 2018 *)
-
{a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^7)/n)}
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=local(F=exp(sum(m=1, n, Lucas(m)^8*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}
A203859
a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^8, where Lucas(n) = A000204(n).
Original entry on oeis.org
1, 3280, 21845, 1439560, 42871776, 1836648080, 71463773280, 2976410112120, 123670531932160, 5238909421389744, 223579471959374400, 9630874585937597160, 417598023129771078720, 18217658692611614215920, 798773601460909332885856, 35180230663617319463871240
Offset: 1
G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4)^3280 * (1-4*x^3-x^6)^21845 * (1-7*x^4+x^8)^1439560 * (1-11*x^5-x^10)^42871776 *...* (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) *...)
where F(x) = exp( Sum_{n>=1} Lucas(n)^9 * x^n/n ) = g.f. of A203809:
F(x) = 1 + x + 9842*x^2 + 97223*x^3 + 58608265*x^4 + 1390114224*x^5 +...
where
log(F(x)) = x + 3^9*x^2/2 + 4^9*x^3/3 + 7^9*x^4/4 + 11^9*x^5/5 + 18^9*x^6/6 + 29^9*x^7/7 + 47^9*x^8/8 +...+ Lucas(n)^9*x^n/n +...
-
a[n_] := DivisorSum[n, MoebiusMu[n/#]*LucasL[#]^8&]/n; Array[a, 30] (* G. C. Greubel, Dec 19 2017 *)
-
{a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^8)/n)}
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=local(F=exp(sum(m=1, n, Lucas(m)^9*x^m/m)+x*O(x^n)));if(n==1,1,polcoeff(F*prod(k=1,n-1,(1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)),n)/Lucas(n))}
A212443
a(n) = (1/n) * Sum_{d|n} moebius(n/d) * A002203(d)^2, where A002203 is the companion Pell numbers.
Original entry on oeis.org
4, 16, 64, 280, 1344, 6496, 32640, 166320, 862400, 4523232, 23970240, 128063040, 689008320, 3728973120, 20285199872, 110841302880, 608029121280, 3346972244000, 18480871268160, 102328688556864, 568014587806720, 3160148362953120, 17617881702072960
Offset: 1
-
a[n_] := DivisorSum[n, MoebiusMu[n/#] * LucasL[#, 2]^2 &] / n; Array[a, 25] (* Amiram Eldar, Aug 22 2023 *)
-
{A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
{a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*A002203(d)^2)/n)}
for(n=1,30,print1(a(n),","))
Showing 1-8 of 8 results.
Comments