cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A360840 3-full numbers (A036966) sandwiched between twin primes.

Original entry on oeis.org

432, 2592, 139968, 444528, 472392, 995328, 3456000, 5174928, 6561000, 10125000, 15552000, 15804072, 17496000, 25299648, 28449792, 37340352, 54675000, 63700992, 85957848, 88723728, 99574272, 120891312, 144027072, 169869312, 177147000, 197413632, 253125000, 259308000
Offset: 1

Views

Author

Amiram Eldar, Feb 23 2023

Keywords

Examples

			432 = 2^4 * 3^3 is a term since it is 3-full and 431 and 433 are twin primes.
		

Crossrefs

Intersection of A014574 and A036966.
Subsequence of A113839.

Programs

  • Mathematica
    Select[6*Range[10^6], PrimeQ[# - 1] && PrimeQ[# + 1] && Min[FactorInteger[#][[;; , 2]]] > 2 &]
  • PARI
    is(n) = isprime(n-1) && isprime(n+1) && vecmin(factor(n)[,2]) > 2;

A360841 4-full numbers (A036967) sandwiched between twin primes.

Original entry on oeis.org

2592, 139968, 995328, 37340352, 63700992, 99574272, 169869312, 414720000, 1399680000, 4076863488, 10871635968, 17714700000, 22781250000, 25312500000, 35888419872, 51840000000, 82012500000, 98802571392, 135304020000, 136136700000, 170749797552, 174960000000, 196730062848
Offset: 1

Views

Author

Amiram Eldar, Feb 23 2023

Keywords

Examples

			2592 = 2^5 * 3^4 is a term since it is 4-full and 2591 and 2593 are twin primes.
		

Crossrefs

Intersection of A014574 and A036967.
Subsequence of A113839 and A360840.

Programs

  • Mathematica
    Select[6*Range[2*10^5], PrimeQ[# - 1] && PrimeQ[# + 1] && Min[FactorInteger[#][[;; , 2]]] > 3 &]
  • PARI
    is(n) = isprime(n-1) && isprime(n+1) && vecmin(factor(n)[,2]) > 3;

A360842 5-full numbers (A069492) sandwiched between twin primes.

Original entry on oeis.org

139968, 995328, 63700992, 4076863488, 17714700000, 82012500000, 98802571392, 174960000000, 445240556352, 641194278912, 889223142528, 1059917571072, 1594323000000, 1663012435968, 2348273369088, 3333709317312, 5717741400000, 16260080320512, 19144761127488, 28697814000000
Offset: 1

Views

Author

Amiram Eldar, Feb 23 2023

Keywords

Examples

			139968 = 2^6 * 3^7 is a term since it is 5-full and 139967 and 139969 are twin primes.
		

Crossrefs

Intersection of A014574 and A069492.
Subsequence of A113839, A360840 and A360841.

Programs

  • Mathematica
    Select[6*Range[2*10^5], PrimeQ[# - 1] && PrimeQ[# + 1] && Min[FactorInteger[#][[;; , 2]]] > 4 &]
  • PARI
    is(n) = isprime(n-1) && isprime(n+1) && vecmin(factor(n)[,2]) > 4;

A360843 6-full numbers (A069493) sandwiched between twin primes.

Original entry on oeis.org

139968, 98802571392, 174960000000, 889223142528, 1594323000000, 2348273369088, 19144761127488, 28697814000000, 56358560858112, 84537841287168, 150289495621632, 186624000000000, 328341017826432, 369056250000000, 392147405854848, 578415690713088, 597871125000000
Offset: 1

Views

Author

Amiram Eldar, Feb 23 2023

Keywords

Examples

			139968 = 2^6 * 3^7 is a term since it is 6-full and 139967 and 139969 are twin primes.
		

Crossrefs

Intersection of A014574 and A069493.
Subsequence of A113839, A360840, A360841 and A360842.

Programs

  • Mathematica
    Select[6*Range[10^5], PrimeQ[# - 1] && PrimeQ[# + 1] && Min[FactorInteger[#][[;; , 2]]] > 5 &]
  • PARI
    is(n) = isprime(n-1) && isprime(n+1) && vecmin(factor(n)[,2]) > 5;

A360844 a(n) is the least k-full number that is sandwiched between twin primes.

Original entry on oeis.org

4, 432, 2592, 139968, 139968, 174960000000, 56358560858112, 84537841287168, 578415690713088, 578415690713088, 1141260857376768, 61628086298345472, 61628086298345472, 61628086298345472, 322850407500000000000000000000, 322850407500000000000000000000, 62518864539857068333550694039552
Offset: 2

Views

Author

Amiram Eldar, Feb 23 2023

Keywords

Comments

k-full number is a number m such that if a prime p divides m then so does p^k. All the exponents in the canonical prime factorization of a k-full number are not smaller than k.
a(2)-a(15) are the terms below 3*10^19. Except for a(7) = 174960000000, they are all 3-smooth numbers (A003586, and thus they are terms of A027856). Are there other terms that are not 3-smooth?
a(168) = 2^176 * 3^173 * 7^168 is the first term that is not 5-smooth. - Bert Dobbelaere, Feb 24 2023

Examples

			The first 3 terms, their factorizations and the corresponding twin primes are:
  n |   a(n)  prime factorization  A051904(a(n))  {a(n)-1, a(n)+1}
  ----------------------------------------------------------------
  2 |     4                  2^2              2             {3, 5}
  3 |   432            2^4 * 3^3              3         {431, 433}
  4 |  2592            2^5 * 3^4              4       {2591, 2593}
		

Crossrefs

Extensions

More terms from Bert Dobbelaere, Feb 24 2023

A370395 Numbers k that are neither squarefree nor prime powers sandwiched between twin primes.

Original entry on oeis.org

12, 18, 60, 72, 108, 150, 180, 192, 198, 228, 240, 270, 312, 348, 420, 432, 522, 600, 660, 810, 828, 882, 1020, 1032, 1050, 1062, 1092, 1152, 1278, 1320, 1428, 1452, 1488, 1608, 1620, 1668, 1788, 1872, 1932, 1950, 1998, 2028, 2088, 2112, 2142, 2268, 2340, 2550
Offset: 1

Views

Author

Michael De Vlieger, Mar 27 2024

Keywords

Comments

Contains A113839 \ {4}.
This sequence contains 1062, 1278, 1608 while A258838 does not; A258838 includes 4, 6, 30, 42, 462, 570, etc.

Examples

			The number 12 is neither squarefree nor a prime power but comes between primes 11 and 13.
The number 30 is squarefree, though it comes between primes 29 and 31, it is not in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[1 + Select[Prime@ Range[100], PrimeQ[# + 2] &], Nor[SquareFreeQ[#], PrimePowerQ[#]] &]

Formula

Intersection of A014574 and A126706.

A173518 Solutions z of the Diophantine equation x^3 + y^3 = 6z^3.

Original entry on oeis.org

21, 960540, 16418498901144294337512360, 436066841882071117095002459324085167366543342937477344818646196279385305441506861017701946929489111120
Offset: 1

Views

Author

Michel Lagneau, Feb 20 2010

Keywords

Comments

A. Nitaj proved Erdős's conjecture (1975) and claimed that there exist infinitely many triples of 3-powerful numbers a,b,c with (a,b) = 1, such that a+b=c, because the equation x^3 + y^3 = 6z^3 admits an infinite number of solutions, and given by the recurrence equations (see formula). It is proved that a=x(k)^3, b=y(k)^3, and c=6c^3, and are 3-powerful numbers for each k >= 1.

Examples

			37^3 + 17^3 = 6*21^3.
		

References

  • J. M. De Koninck, Ces nombres qui nous fascinent, Ellipses, 2008, p. 348.
  • Mordell, L. J. (1969). Diophantine equations. Academic Press. ISBN 0-12-506250-8

Crossrefs

Programs

  • Maple
    x0:=37:y0:=17:z0:=21: for p from 1 to 5 do: x1:=x0*(x0^3+ 2*y0^3):y1:=-y0*(2*x0^3+ y0^3):z1:=z0*(x0^3- y0^3): print(z1) : x0 :=x1 :y0 :=y1 :z0 :=z1 :od :

Formula

We generate the solutions (x(k),y(k),z(k)) from the initial solution x(0) = 37, y(0)=17, z(0)=21 x(k+1) = x(k)*(x(k)^3 + 2*y(k)^3) y(k+1) = -y(k)*(2*x(k)^3 + y(k)^3) z(k+1) = z(k)*(x(k)^3 - y(k)^3).

A370355 Highly touchable numbers sandwiched between untouchable twin pairs.

Original entry on oeis.org

1681, 5251, 7771, 36961, 39271, 170941, 196351, 360361, 510511, 1009471, 9699691
Offset: 1

Views

Author

Amiram Eldar, Feb 16 2024

Keywords

Comments

Highly touchable numbers k have a record number of solutions x to A001065(x) = k, while untouchable numbers k have no solution to this equation.

Crossrefs

Intersection of A238895 and {A231964(n) + 1};
Similar sequences: A068507, A113839.

Programs

  • Mathematica
    seq[nmax_] := Module[{v = Table[0, {nmax}], i, s = {}, vmax = -1}, Do[i = DivisorSigma[1, n] - n; If[0 < i <= nmax, v[[i]]++], {n, 1, nmax^2}]; Do[If[v[[n]] > vmax, vmax = v[[n]]; If[v[[n - 1]] == 0 && v[[n + 1]] == 0, AppendTo[s, n]]], {n, 2, nmax - 1}]; s]; seq[8000]
Showing 1-8 of 8 results.