cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113850 Numbers whose prime factors are raised to the fifth power.

Original entry on oeis.org

32, 243, 3125, 7776, 16807, 100000, 161051, 371293, 537824, 759375, 1419857, 2476099, 4084101, 5153632, 6436343, 11881376, 20511149, 24300000, 28629151, 39135393, 45435424, 52521875, 69343957, 79235168, 90224199, 115856201
Offset: 1

Views

Author

Cino Hilliard, Jan 25 2006

Keywords

Examples

			7776 = 32*243 = 2^5*3^5 so the prime factors, 2 and 3, are raised to the fifth power.
		

Crossrefs

Proper subset of A000584.
Nonunit terms of A329332 column 5 in ascending order.

Programs

  • Mathematica
    Select[ Range@41^5, Union[Last /@ FactorInteger@# ] == {5} &] (* Robert G. Wilson v *)
    Rest[Select[Range[100], SquareFreeQ]^5] (* Vaclav Kotesovec, May 22 2020 *)
  • PARI
    allpwrfact(n,p) = \All prime factors are raised to the power p { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) }
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A113850(n):
        def f(x): return int(n+x+1-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**5 # Chai Wah Wu, Sep 13 2024

Formula

Sum_{k>=1} 1/a(k) = zeta(5)/zeta(10) - 1 = A157291 - 1. - Amiram Eldar, May 22 2020
a(n) = A005117(n+1)^5. - Chai Wah Wu, Sep 13 2024

Extensions

More terms from Robert G. Wilson v, Jan 26 2006
Offset corrected by Chai Wah Wu, Sep 13 2024