A113850 Numbers whose prime factors are raised to the fifth power.
32, 243, 3125, 7776, 16807, 100000, 161051, 371293, 537824, 759375, 1419857, 2476099, 4084101, 5153632, 6436343, 11881376, 20511149, 24300000, 28629151, 39135393, 45435424, 52521875, 69343957, 79235168, 90224199, 115856201
Offset: 1
Examples
7776 = 32*243 = 2^5*3^5 so the prime factors, 2 and 3, are raised to the fifth power.
Crossrefs
Programs
-
Mathematica
Select[ Range@41^5, Union[Last /@ FactorInteger@# ] == {5} &] (* Robert G. Wilson v *) Rest[Select[Range[100], SquareFreeQ]^5] (* Vaclav Kotesovec, May 22 2020 *)
-
PARI
allpwrfact(n,p) = \All prime factors are raised to the power p { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) }
-
Python
from math import isqrt from sympy import mobius def A113850(n): def f(x): return int(n+x+1-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))) m, k = n, f(n) while m != k: m, k = k, f(k) return m**5 # Chai Wah Wu, Sep 13 2024
Formula
Sum_{k>=1} 1/a(k) = zeta(5)/zeta(10) - 1 = A157291 - 1. - Amiram Eldar, May 22 2020
a(n) = A005117(n+1)^5. - Chai Wah Wu, Sep 13 2024
Extensions
More terms from Robert G. Wilson v, Jan 26 2006
Offset corrected by Chai Wah Wu, Sep 13 2024