cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A225546 Tek's flip: Write n as the product of distinct factors of the form prime(i)^(2^(j-1)) with i and j integers, and replace each such factor with prime(j)^(2^(i-1)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 256, 6, 9, 32, 65536, 12, 4294967296, 512, 64, 5, 18446744073709551616, 18, 340282366920938463463374607431768211456, 48, 1024, 131072, 115792089237316195423570985008687907853269984665640564039457584007913129639936, 24, 81, 8589934592, 36, 768
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

This is a multiplicative self-inverse permutation of the integers.
A225547 gives the fixed points.
From Antti Karttunen and Peter Munn, Feb 02 2020: (Start)
This sequence operates on the Fermi-Dirac factors of a number. As arranged in array form, in A329050, this sequence reflects these factors about the main diagonal of the array, substituting A329050[j,i] for A329050[i,j], and this results in many relationships including significant homomorphisms.
This sequence provides a relationship between the operations of squaring and prime shift (A003961) because each successive column of the A329050 array is the square of the previous column, and each successive row is the prime shift of the previous row.
A329050 gives examples of how significant sets of numbers can be formed by choosing their factors in relation to rows and/or columns. This sequence therefore maps equivalent derived sets by exchanging rows and columns. Thus odd numbers are exchanged for squares, squarefree numbers for powers of 2 etc.
Alternative construction: For n > 1, form a vector v of length A299090(n), where each element v[i] for i=1..A299090(n) is a product of those distinct prime factors p(i) of n whose exponent e(i) has the bit (i-1) "on", or 1 (as an empty product) if no such exponents are present. a(n) is then Product_{i=1..A299090(n)} A000040(i)^A048675(v[i]). Note that because each element of vector v is squarefree, it means that each exponent A048675(v[i]) present in the product is a "submask" (not all necessarily proper) of the binary string A087207(n).
This permutation effects the following mappings:
A000035(a(n)) = A010052(n), A010052(a(n)) = A000035(n). [Odd numbers <-> Squares]
A008966(a(n)) = A209229(n), A209229(a(n)) = A008966(n). [Squarefree numbers <-> Powers of 2]
(End)
From Antti Karttunen, Jul 08 2020: (Start)
Moreover, we see also that this sequence maps between A016825 (Numbers of the form 4k+2) and A001105 (2*squares) as well as between A008586 (Multiples of 4) and A028983 (Numbers with even sum of the divisors).
(End)

Examples

			  7744  = prime(1)^2^(2-1)*prime(1)^2^(3-1)*prime(5)^2^(2-1).
a(7744) = prime(2)^2^(1-1)*prime(3)^2^(1-1)*prime(2)^2^(5-1) = 645700815.
		

Crossrefs

Cf. A225547 (fixed points) and the subsequences listed there.
Transposes A329050, A329332.
An automorphism of positive integers under the binary operations A059895, A059896, A059897, A306697, A329329.
An automorphism of A059897 subgroups: A000379, A003159, A016754, A122132.
Permutes lists where membership is determined by number of Fermi-Dirac factors: A000028, A050376, A176525, A268388.
Sequences f that satisfy f(a(n)) = f(n): A048675, A064179, A064547, A097248, A302777, A331592.
Pairs of sequences (f,g) that satisfy a(f(n)) = g(a(n)): (A000265,A008833), (A000290,A003961), (A005843,A334747), (A006519,A007913), (A008586,A334748).
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000040,A001146), (A000079,A019565).
Pairs of sequences (f,g) that satisfy f(a(n)) = g(n), possibly with offset change: (A000035, A010052), (A008966, A209229), (A007814, A248663), (A061395, A299090), (A087207, A267116), (A225569, A227291).
Cf. A331287 [= gcd(a(n),n)].
Cf. A331288 [= min(a(n),n)], see also A331301.
Cf. A331309 [= A000005(a(n)), number of divisors].
Cf. A331590 [= a(a(n)*a(n))].
Cf. A331591 [= A001221(a(n)), number of distinct prime factors], see also A331593.
Cf. A331740 [= A001222(a(n)), number of prime factors with multiplicity].
Cf. A331733 [= A000203(a(n)), sum of divisors].
Cf. A331734 [= A033879(a(n)), deficiency].
Cf. A331735 [= A009194(a(n))].
Cf. A331736 [= A000265(a(n)) = a(A008833(n)), largest odd divisor].
Cf. A335914 [= A038040(a(n))].
A self-inverse isomorphism between pairs of A059897 subgroups: (A000079,A005117), (A000244,A062503), (A000290\{0},A005408), (A000302,A056911), (A000351,A113849 U {1}), (A000400,A062838), (A001651,A252895), (A003586,A046100), (A007310,A000583), (A011557,A113850 U {1}), (A028982,A042968), (A053165,A065331), (A262675,A268390).
A bijection between pairs of sets: (A001248,A011764), (A007283,A133466), (A016825, A001105), (A008586, A028983).
Cf. also A336321, A336322 (compositions with another involution, A122111).

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    a(n) = {my(f=factor(n)); for (i=1, #f~, my(p=f[i,1]); f[i,1] = A019565(f[i,2]); f[i,2] = 2^(primepi(p)-1);); factorback(f);} \\ Michel Marcus, Nov 29 2019
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A225546(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,prime(i)^A048675(prods[i]))); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A225546(n): return prod(prod(prime(i) for i, v in enumerate(bin(e)[:1:-1],1) if v == '1')**(1<Chai Wah Wu, Mar 17 2023

Formula

Multiplicative, with a(prime(i)^j) = A019565(j)^A000079(i-1).
a(prime(i)) = 2^(2^(i-1)).
From Antti Karttunen and Peter Munn, Feb 06 2020: (Start)
a(A329050(n,k)) = A329050(k,n).
a(A329332(n,k)) = A329332(k,n).
Equivalently, a(A019565(n)^k) = A019565(k)^n. If n = 1, this gives a(2^k) = A019565(k).
a(A059897(n,k)) = A059897(a(n), a(k)).
The previous formula implies a(n*k) = a(n) * a(k) if A059895(n,k) = 1.
a(A000040(n)) = A001146(n-1); a(A001146(n)) = A000040(n+1).
a(A000290(a(n))) = A003961(n); a(A003961(a(n))) = A000290(n) = n^2.
a(A000265(a(n))) = A008833(n); a(A008833(a(n))) = A000265(n).
a(A006519(a(n))) = A007913(n); a(A007913(a(n))) = A006519(n).
A007814(a(n)) = A248663(n); A248663(a(n)) = A007814(n).
A048675(a(n)) = A048675(n) and A048675(a(2^k * n)) = A048675(2^k * a(n)) = k + A048675(a(n)).
(End)
From Antti Karttunen and Peter Munn, Jul 08 2020: (Start)
For all n >= 1, a(2n) = A334747(a(n)).
In particular, for n = A003159(m), m >= 1, a(2n) = 2*a(n). [Note that A003159 includes all odd numbers]
(End)

Extensions

Name edited by Peter Munn, Feb 14 2020
"Tek's flip" prepended to the name by Antti Karttunen, Jul 08 2020

A062503 Squarefree numbers squared.

Original entry on oeis.org

1, 4, 9, 25, 36, 49, 100, 121, 169, 196, 225, 289, 361, 441, 484, 529, 676, 841, 900, 961, 1089, 1156, 1225, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2209, 2601, 2809, 3025, 3249, 3364, 3481, 3721, 3844, 4225, 4356, 4489, 4761, 4900, 5041, 5329, 5476
Offset: 1

Views

Author

Jason Earls, Jul 09 2001

Keywords

Comments

Also, except for the initial term, numbers whose prime factors are squared. - Cino Hilliard, Jan 25 2006
Also cubefree numbers that are squares. - Gionata Neri, May 08 2016
All positive integers have a unique factorization into powers of squarefree numbers with distinct exponents that are powers of two. So every positive number is a product of at most one squarefree number (A005117), at most one square of a squarefree number (term of this sequence), at most one 4th power of a squarefree number (A113849), at most one 8th power of a squarefree number, and so on. - Peter Munn, Mar 12 2020
Powerful numbers (A001694) all of whose nonunitary divisors are not powerful (A052485). - Amiram Eldar, May 13 2023

Crossrefs

Characteristic function is A227291.
Other powers of squarefree numbers: A005117(1), A062838(3), A113849(4), A113850(5), A113851(6), A113852(7), A072774(all).
Cf. A001248 (a subsequence).
A329332 column 2 in ascending order.

Programs

  • Haskell
    a062503 = a000290 . a005117  -- Reinhard Zumkeller, Jul 07 2013
    
  • Mathematica
    Select[Range[100], SquareFreeQ]^2
  • PARI
    je=[]; for(n=1,200, if(issquarefree(n),je=concat(je,n^2),)); je
    
  • PARI
    n=0; for (m=1, 10^5, if(issquarefree(m), write("b062503.txt", n++, " ", m^2); if (n==1000, break))) \\ Harry J. Smith, Aug 08 2009
    
  • PARI
    is(n)=issquare(n,&n) && issquarefree(n) \\ Charles R Greathouse IV, Sep 18 2015
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A062503(n):
        def f(x): return n-1+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax**2 # Chai Wah Wu, Aug 19 2024

Formula

Numbers k such that Sum_{d|k} mu(d)*mu(k/d) = 1. - Benoit Cloitre, Mar 03 2004
a(n) = A000290(A005117(n)); A227291(a(n)) = 1. - Reinhard Zumkeller, Jul 07 2013
A000290 \ A062320. - R. J. Mathar, Jul 27 2013
a(n) ~ (Pi^4/36) * n^2. - Charles R Greathouse IV, Nov 24 2015
a(n) = A046692(a(n))^2. - Torlach Rush, Jan 05 2019
For all k in the sequence, Omega(k) = 2*omega(k). - Wesley Ivan Hurt, Apr 30 2020
Sum_{n>=1} 1/a(n) = zeta(2)/zeta(4) = 15/Pi^2 (A082020). - Amiram Eldar, May 22 2020

A329332 Table of powers of squarefree numbers, powers of A019565(n) in increasing order in row n. Square array A(n,k) n >= 0, k >= 0 read by descending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 6, 1, 1, 16, 27, 36, 5, 1, 1, 32, 81, 216, 25, 10, 1, 1, 64, 243, 1296, 125, 100, 15, 1, 1, 128, 729, 7776, 625, 1000, 225, 30, 1, 1, 256, 2187, 46656, 3125, 10000, 3375, 900, 7, 1, 1, 512, 6561, 279936, 15625, 100000, 50625, 27000, 49, 14
Offset: 0

Views

Author

Peter Munn, Nov 10 2019

Keywords

Comments

The A019565 row order gives the table neat relationships with A003961, A003987, A059897, A225546, A319075 and A329050. See the formula section.
Transposition of this table, that is reflection about its main diagonal, has subtle symmetries. For example, consider the unique factorization of a number into powers of distinct primes. This can be restated as factorization into numbers from rows 2^n (n >= 0) with no more than one from each row. Reflecting about the main diagonal, this factorization becomes factorization (of a related number) into numbers from columns 2^k (k >= 0) with no more than one from each column. This is also unique and is factorization into powers of squarefree numbers with distinct exponents that are powers of two. See the example section.

Examples

			Square array A(n,k) begins:
n\k |  0   1     2      3        4          5           6             7
----+------------------------------------------------------------------
   0|  1   1     1      1        1          1           1             1
   1|  1   2     4      8       16         32          64           128
   2|  1   3     9     27       81        243         729          2187
   3|  1   6    36    216     1296       7776       46656        279936
   4|  1   5    25    125      625       3125       15625         78125
   5|  1  10   100   1000    10000     100000     1000000      10000000
   6|  1  15   225   3375    50625     759375    11390625     170859375
   7|  1  30   900  27000   810000   24300000   729000000   21870000000
   8|  1   7    49    343     2401      16807      117649        823543
   9|  1  14   196   2744    38416     537824     7529536     105413504
  10|  1  21   441   9261   194481    4084101    85766121    1801088541
  11|  1  42  1764  74088  3111696  130691232  5489031744  230539333248
  12|  1  35  1225  42875  1500625   52521875  1838265625   64339296875
Reflection of factorization about the main diagonal: (Start)
The canonical (prime power) factorization of 864 is 2^5 * 3^3 = 32 * 27. Reflecting the factors about the main diagonal of the table gives us 10 * 36 = 10^1 * 6^2 = 360. This is the unique factorization of 360 into powers of squarefree numbers with distinct exponents that are powers of two.
Reflection about the main diagonal is given by the self-inverse function A225546(.). Clearly, all positive integers are in the domain of A225546, whether or not they appear in the table. It is valid to start from 360, observe that A225546(360) = 864, then use 864 to derive 360's factorization into appropriate powers of squarefree numbers as above.
(End)
		

Crossrefs

The range of values is A072774.
Rows (abbreviated list): A000079(1), A000244(2), A000400(3), A000351(4), A011557(5), A001024(6), A009974(7), A000420(8), A001023(9), A009965(10), A001020(16), A001022(32), A001026(64).
A019565 is column 1, A334110 is column 2, and columns that are sorted in increasing order (some without the 1) are: A005117(1), A062503(2), A062838(3), A113849(4), A113850(5), A113851(6), A113852(7).
Other subtables: A182944, A319075, A329050.
Re-ordered subtable of A297845, A306697, A329329.
A000290, A003961, A003987, A059897 and A225546 are used to express relationships between terms of this sequence.
Cf. A285322.

Formula

A(n,k) = A019565(n)^k.
A(k,n) = A225546(A(n,k)).
A(n,2k) = A000290(A(n,k)) = A(n,k)^2.
A(2n,k) = A003961(A(n,k)).
A(n,2k+1) = A(n,2k) * A(n,1).
A(2n+1,k) = A(2n,k) * A(1,k).
A(A003987(n,m), k) = A059897(A(n,k), A(m,k)).
A(n, A003987(m,k)) = A059897(A(n,m), A(n,k)).
A(2^n,k) = A319075(k,n+1).
A(2^n, 2^k) = A329050(n,k).
A(n,k) = A297845(A(n,1), A(1,k)) = A306697(A(n,1), A(1,k)), = A329329(A(n,1), A(1,k)).
Sum_{n>=0} 1/A(n,k) = zeta(k)/zeta(2*k), for k >= 2. - Amiram Eldar, Dec 03 2022

A113849 Numbers whose prime factors are raised to the fourth power.

Original entry on oeis.org

16, 81, 625, 1296, 2401, 10000, 14641, 28561, 38416, 50625, 83521, 130321, 194481, 234256, 279841, 456976, 707281, 810000, 923521, 1185921, 1336336, 1500625, 1874161, 2085136, 2313441, 2825761, 3111696, 3418801, 4477456, 4879681, 6765201, 7890481
Offset: 1

Views

Author

Cino Hilliard, Jan 25 2006

Keywords

Comments

This is essentially A005117 (the squarefree numbers) raised to the fourth power. - T. D. Noe, Mar 13 2013
All positive integers have a unique factorization into powers of squarefree numbers with distinct exponents that are powers of two. So every positive number is a product of at most one squarefree number (A005117), at most one square of a squarefree number (A062503), at most one 4th power of a squarefree number (term of this sequence), at most one 8th power of a squarefree number, and so on. - Peter Munn, Mar 12 2020

Examples

			1296 = 16*81 = 2^4*3^4 so the prime factors of 1296, 2 and 3, are raised to the fourth power.
		

Crossrefs

Proper subset of A000583.
Other powers of squarefree numbers: A005117(1), A062503(2), A062838(3), A113850(5), A113851(6), A113852(7), A072774(all).

Programs

  • Mathematica
    Select[ Range@50^4, Union[Last /@ FactorInteger@# ] == {4} &] (* Robert G. Wilson v, Jan 26 2006 *)
    nn = 50; t = Select[Range[2, nn], Union[Transpose[FactorInteger[#]][[2]]] == {1} &]; t^4 (* T. D. Noe, Mar 13 2013 *)
    Rest[Select[Range[100], SquareFreeQ]^4] (* Vaclav Kotesovec, May 22 2020 *)
  • PARI
    allpwrfact(n,p) = { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) } \\ All prime factors are raised to the power p
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A113849(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax**4 # Chai Wah Wu, Aug 19 2024

Formula

From Peter Munn, Oct 31 2019: (Start)
a(n) = A005117(n+1)^4.
{a(n)} = {A225546(A000351(n)) : n >= 0} \ {1}, where {a(n)} denotes the set of integers in the sequence.
(End)
Sum_{k>=1} 1/a(k) = zeta(4)/zeta(8) - 1 = 105/Pi^4 - 1. - Amiram Eldar, May 22 2020

Extensions

More terms from Robert G. Wilson v, Jan 26 2006

A369939 Numbers whose maximal exponent in their prime factorization is a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Amiram Eldar, Feb 06 2024

Keywords

Comments

First differs from its subsequence A115063 at n = 2448. a(2448) = 2592 = 2^5 * 3^4 is not a term of A115063.
First differs from A209061 at n = 62.
Numbers k such that A051903(k) is a Fibonacci number.
The asymptotic density of this sequence is 1/zeta(4) + Sum_{k>=5} (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k))) = 0.94462177878047854647... .

Crossrefs

Similar sequences: A368714, A369937, A369938.

Programs

  • Mathematica
    fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}];
    Select[Range[100], fibQ[Max[FactorInteger[#][[;; , 2]]]] &]
  • PARI
    isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
    is(n) = n == 1 || isfib(vecmax(factor(n)[, 2]));

A374459 Nonsquarefree exponentially odd numbers.

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 88, 96, 104, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 216, 224, 232, 243, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 352, 375, 376, 378, 384, 408, 416, 424, 440, 456, 459, 472, 480, 486, 488, 512, 513, 520, 536
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2024

Keywords

Comments

First differs from A301517 at n = 1213. A301517(1213) = 12500 = 2^2 * 5^5 is not an exponentially odd number.
Numbers whose exponents in their prime factorization are all odd and at least one of them is larger than 1.
All the squarefree numbers (A005117) are exponentially odd. Therefore, the sequence of exponentially odd numbers (A268335) is a disjoint union of the squarefree numbers and this sequence.
The asymptotic density of this sequence is A065463 - A059956 = 0.096515099145... .

Examples

			8 = 2^3 is a term since 3 is odd and larger than 1.
		

Crossrefs

Intersection of A013929 (or A046099) and A268335.
Subsequence of A301517.
Subsequences: A062838 \ {1}, A065036, A102838, A113850, A113852, A179671, A190011, A335988 \ {1}.

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, AllTrue[e, OddQ] && ! AllTrue[e, # == 1 &]]; Select[Range[1000], q]
  • PARI
    is(k) = {my(e = factor(k)[, 2]); for(i = 1, #e, if(!(e[i] %2), return(0))); for(i = 1, #e, if(e[i] >1, return(1))); 0;}

Formula

a(n) = A268335(A374460(n)).
Sum_{n>=1} 1/a(n)^s = zeta(2*s) * (Product_{p prime} (1 + 1/p^s - 1/p^(2*s))) - zeta(s)/zeta(2*s) for s > 1.

A153159 a(n) = A007916(n)^5.

Original entry on oeis.org

32, 243, 3125, 7776, 16807, 100000, 161051, 248832, 371293, 537824, 759375, 1419857, 1889568, 2476099, 3200000, 4084101, 5153632, 6436343, 7962624, 11881376, 17210368, 20511149, 24300000, 28629151, 39135393, 45435424
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100],GCD@@Last/@FactorInteger@#==1&]^5
  • Python
    from sympy import mobius, integer_nthroot
    def A153159(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**5 # Chai Wah Wu, Nov 21 2024

Extensions

Edited and extended by Ray Chandler, Dec 22 2008

A157291 Decimal expansion of Zeta(5)/Zeta(10).

Original entry on oeis.org

1, 0, 3, 5, 8, 9, 7, 4, 7, 7, 2, 7, 7, 5, 0, 0, 2, 2, 4, 3, 9, 4, 4, 9, 8, 5, 8, 7, 4, 5, 6, 0, 9, 5, 6, 8, 4, 2, 4, 7, 8, 8, 4, 2, 5, 6, 0, 7, 6, 8, 9, 4, 8, 0, 8, 2, 2, 4, 6, 6, 5, 4, 2, 3, 7, 4, 4, 6, 6, 9, 2, 5, 6, 1, 2, 4, 0, 3, 3, 7, 4, 1, 8, 9, 3, 2, 1, 5, 9, 8, 8, 3, 9, 3, 9, 0, 6, 8, 0, 1, 1, 4, 6, 3, 0
Offset: 1

Views

Author

R. J. Mathar, Feb 26 2009

Keywords

Comments

The product_{p = primes = A000040} (1+1/p^5), the fifth-power analog to A082020.

Examples

			1.035897477277500224... = (1+1/2^5)*(1+1/3^5)*(1+1/5^5)*(1+1/7^5)*...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(5)/Zeta(10)) ;
  • Mathematica
    RealDigits[Zeta[5]/Zeta[10],10,120][[1]] (* Harvey P. Dale, Apr 06 2013 *)

Formula

Equals A013663/A013668 = Product_{i>=1} (1+1/A050997(i)).
Equals Sum_{k>=1} 1/A005117(k)^5 = 1 + Sum_{k>=1} 1/A113850(k). - Amiram Eldar, May 22 2020
Equals 93555 * zeta(5) / Pi^10. - Vaclav Kotesovec, May 22 2020

A216426 Numbers of the form a^2*b^3, where a != b and a, b > 1.

Original entry on oeis.org

72, 108, 128, 200, 256, 288, 392, 432, 500, 512, 576, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1600, 1728, 1800, 1944, 2000, 2048, 2187, 2304, 2312, 2592, 2700, 2888, 2916, 3087, 3136, 3200, 3267, 3456, 3528, 3872, 3888, 4000
Offset: 1

Views

Author

V. Raman, Sep 07 2012

Keywords

Comments

Terms of A216427 that are not 5th powers of squarefree numbers (A113850) and not 10th powers of primes (A030629). - Amiram Eldar, Feb 07 2023

Crossrefs

Cf. A143610.
Subsequence of A216427. - Zak Seidov, Jan 03 2014

Programs

  • Mathematica
    With[{upto=4000},Select[Union[Flatten[{#[[1]]^2 #[[2]]^3,#[[2]]^2 #[[1]]^3}& /@ Subsets[Range[2,Surd[upto,2]],{2}]]],#<=upto&]](* Harvey P. Dale, Jan 04 2014 *)
    pMx = 25; mx = 2^3 pMx^2; t = Flatten[Table[If[a != b, a^2 b^3, 0], {a, 2, mx^(1/2)}, {b, 2, mx^(1/3)}]]; Union[Select[t, 0 < # <= mx &]] (* T. D. Noe, Jan 02 2014 *)
  • PARI
    list(lim)=my(v=List()); for(b=2, sqrtnint(lim\4,3), for(a=2, sqrtint(lim\b^3), if(a!=b, listput(v, a^2*b^3)))); Set(v) \\ Charles R Greathouse IV, Jan 02 2014
    
  • Python
    from math import isqrt
    from sympy import integer_nthroot, mobius, primepi
    def A216426(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            j, b, a, d = isqrt(x), integer_nthroot(x,6)[0], integer_nthroot(x,5)[0], integer_nthroot(x,10)[0]
            l, c = 0, n+x-2+primepi(b)+sum(mobius(k)*(j//k**3) for k in range(d+1, b+1))+primepi(d)+sum(mobius(k)*(a//k**2+j//k**3) for k in range(1, d+1))
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = sum(mobius(k)*((k2-1)//k**2) for k in range(1, isqrt(k2-1)+1))
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        return bisection(f,n,n) # Chai Wah Wu, Sep 13 2024

Formula

Sum_{n>=1} 1/a(n) = 2 + ((zeta(2)-1)*(zeta(3)-1)-1)/zeta(6) - zeta(5)/zeta(10) - P(6) - P(10) = 0.09117811499514578262..., where P(s) is the prime zeta function. - Amiram Eldar, Feb 07 2023

Extensions

Name corrected by Charles R Greathouse IV, Jan 02 2014
Showing 1-9 of 9 results.