A227291 Characteristic function of squarefree numbers squared (A062503).
1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 1
Examples
a(3) = 0 because 3 is not the square of a squarefree number. a(4) = 1 because sqrt(4) = 2, a squarefree number.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000 (first 10000 terms from Reinhard Zumkeller)
- Index entries for characteristic functions
- Index entries for sequences computed from exponents in factorization of n
Crossrefs
Programs
-
Haskell
a227291 n = fromEnum $ (sum $ zipWith (*) mds (reverse mds)) == 1 where mds = a225817_row n -- Reinhard Zumkeller, Jul 30 2013, Jul 07 2013
-
Maple
A227291 := proc(n) local pe; if n = 0 then 1; else for pe in ifactors(n)[2] do if op(2,pe) <> 2 then return 0 ; end if; end do: end if; 1 ; end proc: seq(A227291(n),n=1..100) ; # R. J. Mathar, Feb 07 2023
-
Mathematica
Table[Abs[Sum[MoebiusMu[n/d], {d,Select[Divisors[n], SquareFreeQ[#] &]}]], {n, 1, 200}] (* Geoffrey Critzer, Mar 18 2015 *) Module[{nn=120,len,sfr},len=Ceiling[Sqrt[nn]];While[!SquareFreeQ[len],len++];sfr=(Select[Range[len],SquareFreeQ])^2; Table[If[MemberQ[ sfr,n],1,0],{n,nn}]] (* Harvey P. Dale, Nov 27 2024 *)
-
PARI
a(n)=if(n<1, 0, direuler(p=2, n, 1+X^2)[n])
-
PARI
A227291(n) = factorback(apply(e->(2==e), factor(n)[,2])); \\ Antti Karttunen, Jul 14 2022
-
PARI
A227291(n) = (issquare(n) && issquarefree(sqrtint(n))); \\ Antti Karttunen, Jul 14 2022
-
Scheme
(define (A227291 n) (if (= 1 n) n (* (if (= 2 (A067029 n)) 1 0) (A227291 (A028234 n))))) ;; Antti Karttunen, Jul 28 2017
Formula
Dirichlet g.f.: zeta(2s)/zeta(4s) = prod[prime p: 1+p^(-2s) ], see A008966.
a(n) = A063524(sum(A225817(n,k)*A225817(n,A000005(n)+1-k): k=1..A000005(n))). - Reinhard Zumkeller, Aug 01 2013
Multiplicative with a(p^e) = 1 if e=2, a(p^e) = 0 if e=1 or e>2. - Antti Karttunen, Jul 28 2017
Sum_{k=1..n} a(k) ~ 6*sqrt(n) / Pi^2. - Vaclav Kotesovec, Feb 02 2019
From Antti Karttunen, Jul 18 2022: (Start)
(End)
Comments