cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A050997 Fifth powers of primes.

Original entry on oeis.org

32, 243, 3125, 16807, 161051, 371293, 1419857, 2476099, 6436343, 20511149, 28629151, 69343957, 115856201, 147008443, 229345007, 418195493, 714924299, 844596301, 1350125107, 1804229351, 2073071593, 3077056399, 3939040643, 5584059449, 8587340257, 10510100501
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A062799(k) = 5.
Let r(n) = (a(n)+1)/(a(n)-1) if a(n) mod 4 = 3, (a(n)-1)/(a(n)+1) otherwise; then Product_{n>=1} r(n) = (31/33) * (244/242) * (3124/3126) * (16808/16806) * ... = 246016/259875. - Dimitris Valianatos, Mar 09 2020

Crossrefs

Programs

Formula

A056595(a(n)) = 3. - Reinhard Zumkeller, Aug 15 2011
Sum_{n>=1} 1/a(n) = P(5) = 0.0357550174... (A085965). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(5)/zeta(10) (A157291).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(5) = 1/A013663. (End)

A113850 Numbers whose prime factors are raised to the fifth power.

Original entry on oeis.org

32, 243, 3125, 7776, 16807, 100000, 161051, 371293, 537824, 759375, 1419857, 2476099, 4084101, 5153632, 6436343, 11881376, 20511149, 24300000, 28629151, 39135393, 45435424, 52521875, 69343957, 79235168, 90224199, 115856201
Offset: 1

Views

Author

Cino Hilliard, Jan 25 2006

Keywords

Examples

			7776 = 32*243 = 2^5*3^5 so the prime factors, 2 and 3, are raised to the fifth power.
		

Crossrefs

Proper subset of A000584.
Nonunit terms of A329332 column 5 in ascending order.

Programs

  • Mathematica
    Select[ Range@41^5, Union[Last /@ FactorInteger@# ] == {5} &] (* Robert G. Wilson v *)
    Rest[Select[Range[100], SquareFreeQ]^5] (* Vaclav Kotesovec, May 22 2020 *)
  • PARI
    allpwrfact(n,p) = \All prime factors are raised to the power p { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) }
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A113850(n):
        def f(x): return int(n+x+1-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**5 # Chai Wah Wu, Sep 13 2024

Formula

Sum_{k>=1} 1/a(k) = zeta(5)/zeta(10) - 1 = A157291 - 1. - Amiram Eldar, May 22 2020
a(n) = A005117(n+1)^5. - Chai Wah Wu, Sep 13 2024

Extensions

More terms from Robert G. Wilson v, Jan 26 2006
Offset corrected by Chai Wah Wu, Sep 13 2024

A347330 Decimal expansion of zeta(10) / zeta(5).

Original entry on oeis.org

9, 6, 5, 3, 4, 6, 4, 9, 6, 0, 9, 1, 6, 3, 6, 0, 3, 6, 2, 1, 3, 7, 7, 2, 9, 6, 4, 2, 4, 3, 2, 2, 1, 2, 2, 4, 7, 4, 0, 5, 0, 1, 6, 0, 5, 3, 1, 8, 7, 3, 0, 1, 8, 0, 1, 5, 7, 5, 6, 4, 6, 4, 7, 2, 6, 8, 8, 1, 8, 6, 5, 2, 4, 4, 3, 9, 9, 0, 6, 4, 8, 0, 5, 4, 8, 3, 8
Offset: 0

Views

Author

Sean A. Irvine, Aug 26 2021

Keywords

Examples

			0.96534649609163603621377296424322122474050...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[10] / Zeta[5], 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)

Formula

Equals Sum_{k>=1} A008836(k) / k^5.
Equals Product_{p prime} 1/(1+p^(-5)). [corrected by Amiram Eldar, Jun 06 2023]
Equals 1/A157291. - R. J. Mathar, Jul 20 2025

A269404 Decimal expansion of Product_{k >= 1} (1 + 1/prime(k)^6).

Original entry on oeis.org

1, 0, 1, 7, 0, 9, 2, 7, 6, 9, 1, 3, 0, 4, 9, 9, 2, 7, 6, 6, 4, 3, 2, 7, 2, 1, 3, 3, 0, 9, 7, 9, 0, 9, 9, 2, 0, 4, 9, 2, 2, 1, 9, 0, 7, 9, 4, 9, 4, 1, 0, 1, 1, 3, 4, 6, 6, 4, 6, 5, 1, 7, 9, 3, 8, 1, 8, 9, 3, 5, 3, 3, 5, 8, 3, 4, 2, 2, 7, 9, 4, 3, 1, 8, 1, 5, 1, 5, 9, 6, 4, 7, 8, 5, 0, 6, 6, 8, 9, 7, 8, 4, 5, 4, 6, 5, 1, 0, 6, 4, 0, 2, 6, 1, 3, 3, 6, 9, 3, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 25 2016

Keywords

Comments

More generally, Product_{k >= 1} (1 + 1/prime(k)^m) = zeta(m)/zeta(2*m), where zeta(m) is the Riemann zeta function.

Examples

			1.0170927691304992766432721330979099204922190794941...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[6]/Zeta[12], 10, 120][[1]]
    RealDigits[675675/(691 Pi^6), 10, 120][[1]]
  • PARI
    zeta(6)/zeta(12) \\ Amiram Eldar, Jun 11 2023

Formula

Equals zeta(6)/zeta(12).
Equals 675675/(691*Pi^6).
Equals Sum_{k>=1} 1/A005117(k)^6 = 1 + Sum_{k>=1} 1/A113851(k). - Amiram Eldar, Jun 27 2020
Showing 1-4 of 4 results.