cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A182448 Decimal expansion of Pi^2/15.

Original entry on oeis.org

6, 5, 7, 9, 7, 3, 6, 2, 6, 7, 3, 9, 2, 9, 0, 5, 7, 4, 5, 8, 8, 9, 6, 6, 0, 6, 6, 6, 5, 8, 4, 1, 0, 0, 7, 5, 6, 8, 7, 5, 7, 9, 9, 6, 0, 4, 8, 2, 7, 1, 9, 3, 7, 5, 0, 9, 4, 2, 2, 3, 2, 9, 1, 7, 4, 8, 0, 0, 2, 9, 8, 8, 1, 6, 1, 2, 8, 0, 3, 4, 9, 5, 3, 3, 4, 5, 1, 5, 6, 0, 2, 4, 7, 9, 0, 3, 4, 8, 2, 1, 2, 1, 6, 0, 1
Offset: 0

Views

Author

Mats Granvik, Apr 29 2012

Keywords

Examples

			0.65797362673929...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n + 0)^2 - 1/(n + 1)^2 + 1/(n + 2)^2 - 1/(n + 3)^2 - 4/(n + 4)^2 - 1/(n + 5)^2 + 1/(n + 6)^2 - 1/(n + 7)^2 + 1/(n + 8)^2 + 4/(n + 9)^2, {n, 1, Infinity, 10}], 90]][[1]]
    RealDigits[N[Sum[LiouvilleLambda[n]/n^2, {n, 1, Infinity}], 90]][[1]]
    RealDigits[Pi^2/15,10,120][[1]] (* Harvey P. Dale, May 28 2017 *)
  • PARI
    Pi^2/15 \\ Michel Marcus, Oct 21 2014

Formula

See Mathematica code.
Equals Gamma(4)*zeta(4)/Pi^2 = zeta(4)/zeta(2) = A013662/A013661 = Product_{p prime} (p^2/(p^2+1)). - Stanislav Sykora, Oct 21 2014
Equals (1/10) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/3)^2 - 1/(n + 2/3)^2 ). - Peter Bala, Oct 31 2019
Equals Sum_{k>=1} A008836(k)/k^2. - Amiram Eldar, Jun 23 2020
Equals (1/10) * Sum_{k>=1} (5*t(k-1) + 3*t(k))/k^2, where t(k) = A010060(k) (Tóth, 2022). - Amiram Eldar, Feb 04 2024
Equals 3/5 + (1/5) * Sum_{n>=1} 1/(n^2*(n+1)^2). - Davide Rotondo, May 28 2025
Equals 1/A082020 = A164102/30 = A195055/5. - Hugo Pfoertner, May 28 2025

Extensions

Offset corrected and more terms added by Rick L. Shepherd, Jan 08 2014

A347328 Decimal expansion of zeta(6) / zeta(3).

Original entry on oeis.org

8, 4, 6, 3, 3, 5, 1, 9, 3, 7, 0, 8, 6, 9, 4, 9, 0, 2, 9, 9, 4, 8, 9, 5, 7, 3, 6, 7, 3, 5, 9, 7, 9, 7, 8, 3, 2, 3, 6, 8, 0, 2, 9, 3, 8, 2, 7, 2, 2, 6, 3, 7, 1, 0, 3, 4, 2, 3, 4, 5, 3, 6, 2, 0, 8, 7, 4, 2, 8, 3, 1, 0, 3, 4, 0, 8, 5, 6, 9, 7, 7, 7, 6, 1, 0, 5, 9
Offset: 0

Views

Author

Sean A. Irvine, Aug 26 2021

Keywords

Examples

			0.84633519370869490299489573673597978323680...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[6] / Zeta[3], 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)

Formula

Equals Sum_{k>=1} A008836(k) / k^3.
Equals Product_{p prime} 1/(1+p^(-3)). [corrected by Amiram Eldar, Jun 06 2023]

A347329 Decimal expansion of Pi^4/105.

Original entry on oeis.org

9, 2, 7, 7, 0, 5, 6, 2, 8, 8, 9, 5, 2, 6, 1, 3, 0, 7, 0, 1, 3, 7, 1, 7, 4, 5, 4, 1, 7, 8, 1, 4, 3, 9, 1, 6, 6, 6, 4, 0, 7, 2, 2, 4, 4, 5, 0, 1, 7, 6, 5, 9, 2, 0, 8, 7, 1, 1, 2, 2, 4, 7, 0, 3, 8, 0, 6, 7, 4, 8, 1, 3, 8, 7, 4, 5, 4, 4, 7, 2, 5, 6, 2, 0, 2, 0, 8
Offset: 0

Views

Author

Sean A. Irvine, Aug 26 2021

Keywords

Examples

			0.9277056288952613070137174541781439166640...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^4/105, 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)

Formula

Equals zeta(8) / zeta(4).
Equals Sum_{k>=1} A008836(k) / k^4.
Equals Product_{p prime} 1/(1+p^(-4)). [corrected by Amiram Eldar, Jun 06 2023]

A347331 Decimal expansion of 691 * Pi^6 / 675675.

Original entry on oeis.org

9, 8, 3, 1, 9, 4, 4, 8, 3, 6, 8, 0, 0, 7, 6, 0, 2, 1, 7, 3, 8, 0, 8, 6, 5, 5, 8, 7, 2, 1, 0, 1, 5, 5, 0, 3, 1, 8, 9, 0, 2, 9, 2, 1, 0, 6, 4, 7, 1, 3, 5, 4, 0, 0, 3, 2, 6, 0, 2, 0, 1, 2, 1, 4, 3, 6, 3, 5, 4, 5, 9, 9, 1, 4, 0, 2, 1, 3, 8, 5, 6, 5, 5, 5, 2, 4, 0
Offset: 0

Views

Author

Sean A. Irvine, Aug 26 2021

Keywords

Examples

			0.9831944836800760217380865587210155031...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[691 * Pi^6 / 675675, 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)

Formula

Equals zeta(12) / zeta(6).
Equals Sum_{k>=1} A008836(k) / k^6.
Equals Product_{p prime} 1/(1+p^(-6)). [corrected by Amiram Eldar, Jun 06 2023]

Extensions

Data corrected by Amiram Eldar, Jun 06 2023
Showing 1-4 of 4 results.