cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A000384 Hexagonal numbers: a(n) = n*(2*n-1).

Original entry on oeis.org

0, 1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 3003, 3160, 3321, 3486, 3655, 3828, 4005, 4186, 4371, 4560
Offset: 0

Views

Author

Keywords

Comments

Number of edges in the join of two complete graphs, each of order n, K_n * K_n. - Roberto E. Martinez II, Jan 07 2002
The power series expansion of the entropy function H(x) = (1+x)log(1+x) + (1-x)log(1-x) has 1/a_i as the coefficient of x^(2i) (the odd terms being zero). - Tommaso Toffoli (tt(AT)bu.edu), May 06 2002
Partial sums of A016813 (4n+1). Also with offset = 0, a(n) = (2n+1)(n+1) = A005408 * A000027 = 2n^2 + 3n + 1, i.e., a(0) = 1. - Jeremy Gardiner, Sep 29 2002
Sequence also gives the greatest semiperimeter of primitive Pythagorean triangles having inradius n-1. Such a triangle has consecutive longer sides, with short leg 2n-1, hypotenuse a(n) - (n-1) = A001844(n), and area (n-1)*a(n) = 6*A000330(n-1). - Lekraj Beedassy, Apr 23 2003
Number of divisors of 12^(n-1), i.e., A000005(A001021(n-1)). - Henry Bottomley, Oct 22 2001
More generally, if p1 and p2 are two arbitrarily chosen distinct primes then a(n) is the number of divisors of (p1^2*p2)^(n-1) or equivalently of any member of A054753^(n-1). - Ant King, Aug 29 2011
Number of standard tableaux of shape (2n-1,1,1) (n>=1). - Emeric Deutsch, May 30 2004
It is well known that for n>0, A014105(n) [0,3,10,21,...] is the first of 2n+1 consecutive integers such that the sum of the squares of the first n+1 such integers is equal to the sum of the squares of the last n; e.g., 10^2 + 11^2 + 12^2 = 13^2 + 14^2.
Less well known is that for n>1, a(n) [0,1,6,15,28,...] is the first of 2n consecutive integers such that sum of the squares of the first n such integers is equal to the sum of the squares of the last n-1 plus n^2; e.g., 15^2 + 16^2 + 17^2 = 19^2 + 20^2 + 3^2. - Charlie Marion, Dec 16 2006
a(n) is also a perfect number A000396 when n is an even superperfect number A061652. - Omar E. Pol, Sep 05 2008
Sequence found by reading the line from 0, in the direction 0, 6, ... and the line from 1, in the direction 1, 15, ..., in the square spiral whose vertices are the generalized hexagonal numbers A000217. - Omar E. Pol, Jan 09 2009
For n>=1, 1/a(n) = Sum_{k=0..2*n-1} ((-1)^(k+1)*binomial(2*n-1,k)*binomial(2*n-1+k,k)*H(k)/(k+1)) with H(k) harmonic number of order k.
The number of possible distinct colorings of any 2 colors chosen from n colors of a square divided into quadrants. - Paul Cleary, Dec 21 2010
Central terms of the triangle in A051173. - Reinhard Zumkeller, Apr 23 2011
For n>0, a(n-1) is the number of triples (w,x,y) with all terms in {0,...,n} and max(|w-x|,|x-y|) = |w-y|. - Clark Kimberling, Jun 12 2012
a(n) is the number of positions of one domino in an even pyramidal board with base 2n. - César Eliud Lozada, Sep 26 2012
Partial sums give A002412. - Omar E. Pol, Jan 12 2013
Let a triangle have T(0,0) = 0 and T(r,c) = |r^2 - c^2|. The sum of the differences of the terms in row(n) and row(n-1) is a(n). - J. M. Bergot, Jun 17 2013
With T_(i+1,i)=a(i+1) and all other elements of the lower triangular matrix T zero, T is the infinitesimal generator for A176230, analogous to A132440 for the Pascal matrix. - Tom Copeland, Dec 11 2013
a(n) is the number of length 2n binary sequences that have exactly two 1's. a(2) = 6 because we have: {0,0,1,1}, {0,1,0,1}, {0,1,1,0}, {1,0,0,1}, {1,0,1,0}, {1,1,0,0}. The ordinary generating function with interpolated zeros is: (x^2 + 3*x^4)/(1-x^2)^3. - Geoffrey Critzer, Jan 02 2014
For n > 0, a(n) is the largest integer k such that k^2 + n^2 is a multiple of k + n. More generally, for m > 0 and n > 0, the largest integer k such that k^(2*m) + n^(2*m) is a multiple of k + n is given by k = 2*n^(2*m) - n. - Derek Orr, Sep 04 2014
Binomial transform of (0, 1, 4, 0, 0, 0, ...) and second partial sum of (0, 1, 4, 4, 4, ...). - Gary W. Adamson, Oct 05 2015
a(n) also gives the dimension of the simple Lie algebras D_n, for n >= 4. - Wolfdieter Lang, Oct 21 2015
For n > 0, a(n) equals the number of compositions of n+11 into n parts avoiding parts 2, 3, 4. - Milan Janjic, Jan 07 2016
Also the number of minimum dominating sets and maximal irredundant sets in the n-cocktail party graph. - Eric W. Weisstein, Jun 29 and Aug 17 2017
As Beedassy's formula shows, this Hexagonal number sequence is the odd bisection of the Triangle number sequence. Both of these sequences are figurative number sequences. For A000384, a(n) can be found by multiplying its triangle number by its hexagonal number. For example let's use the number 153. 153 is said to be the 17th triangle number but is also said to be the 9th hexagonal number. Triangle(17) Hexagonal(9). 17*9=153. Because the Hexagonal number sequence is a subset of the Triangle number sequence, the Hexagonal number sequence will always have both a triangle number and a hexagonal number. n* (2*n-1) because (2*n-1) renders the triangle number. - Bruce J. Nicholson, Nov 05 2017
Also numbers k with the property that in the symmetric representation of sigma(k) the smallest Dyck path has a central valley and the largest Dyck path has a central peak, n >= 1. Thus all hexagonal numbers > 0 have middle divisors. (Cf. A237593.) - Omar E. Pol, Aug 28 2018
k^a(n-1) mod n = 1 for prime n and k=2..n-1. - Joseph M. Shunia, Feb 10 2019
Consider all Pythagorean triples (X, Y, Z=Y+1) ordered by increasing Z: a(n+1) gives the semiperimeter of related triangles; A005408, A046092 and A001844 give the X, Y and Z values. - Ralf Steiner, Feb 25 2020
See A002939(n) = 2*a(n) for the corresponding perimeters. - M. F. Hasler, Mar 09 2020
It appears that these are the numbers k with the property that the smallest subpart in the symmetric representation of sigma(k) is 1. - Omar E. Pol, Aug 28 2021
The above conjecture is true. See A280851 for a proof. - Hartmut F. W. Hoft, Feb 02 2022
The n-th hexagonal number equals the sum of the n consecutive integers with the same parity starting at n; for example, 1, 2+4, 3+5+7, 4+6+8+10, etc. In general, the n-th 2k-gonal number is the sum of the n consecutive integers with the same parity starting at (k-2)*n - (k-3). When k = 1 and 2, this result generates the positive integers, A000027, and the squares, A000290, respectively. - Charlie Marion, Mar 02 2022
Conjecture: For n>0, min{k such that there exist subsets A,B of {0,1,2,...,a(n)} such that |A|=|B|=k and A+B={0,1,2,...,2*a(n)}} = 2*n. - Michael Chu, Mar 09 2022

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 38.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 53-54, 129-130, 132.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 21.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 122-123.

Crossrefs

a(n)= A093561(n+1, 2), (4, 1)-Pascal column.
a(n) = A100345(n, n-1) for n>0.
Cf. A002939 (twice a(n): sums of Pythagorean triples (X, Y, Z=Y+1)).
Cf. A280851.

Programs

  • Haskell
    a000384 n = n * (2 * n - 1)
    a000384_list = scanl (+) 0 a016813_list
    -- Reinhard Zumkeller, Dec 16 2012
    
  • Maple
    A000384:=n->n*(2*n-1); seq(A000384(k), k=0..100); # Wesley Ivan Hurt, Sep 27 2013
  • Mathematica
    Table[n*(2 n - 1), {n, 0, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *)
    LinearRecurrence[{3, -3, 1}, {0, 1, 6}, 50] (* Harvey P. Dale, Sep 10 2015 *)
    Join[{0}, Accumulate[Range[1, 312, 4]]] (* Harvey P. Dale, Mar 26 2016 *)
    (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[6], n], {n, 0, 48}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    PolygonalNumber[6, Range[0, 20]] (* Eric W. Weisstein, Aug 17 2017 *)
    CoefficientList[Series[x*(1 + 3*x)/(1 - x)^3 , {x, 0, 100}], x] (* Stefano Spezia, Sep 02 2018 *)
  • PARI
    a(n)=n*(2*n-1)
    
  • PARI
    a(n) = binomial(2*n,2) \\ Altug Alkan, Oct 06 2015
    
  • Python
    # Intended to compute the initial segment of the sequence, not isolated terms.
    def aList():
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 4, y + 4
    A000384 = aList()
    print([next(A000384) for i in range(49)]) # Peter Luschny, Aug 04 2019

Formula

a(n) = Sum_{k=1..n} tan^2((k - 1/2)*Pi/(2n)). - Ignacio Larrosa Cañestro, Apr 17 2001
E.g.f.: exp(x)*(x+2x^2). - Paul Barry, Jun 09 2003
G.f.: x*(1+3*x)/(1-x)^3. - Simon Plouffe in his 1992 dissertation, dropping the initial zero
a(n) = A000217(2*n-1) = A014105(-n).
a(n) = 4*A000217(n-1) + n. - Lekraj Beedassy, Jun 03 2004
a(n) = right term of M^n * [1,0,0], where M = the 3 X 3 matrix [1,0,0; 1,1,0; 1,4,1]. Example: a(5) = 45 since M^5 *[1,0,0] = [1,5,45]. - Gary W. Adamson, Dec 24 2006
Row sums of triangle A131914. - Gary W. Adamson, Jul 27 2007
Row sums of n-th row, triangle A134234 starting (1, 6, 15, 28, ...). - Gary W. Adamson, Oct 14 2007
Starting with offset 1, = binomial transform of [1, 5, 4, 0, 0, 0, ...]. Also, A004736 * [1, 4, 4, 4, ...]. - Gary W. Adamson, Oct 25 2007
a(n)^2 + (a(n)+1)^2 + ... + (a(n)+n-1)^2 = (a(n)+n+1)^2 + ... + (a(n)+2n-1)^2 + n^2; e.g., 6^2 + 7^2 = 9^2 + 2^2; 28^2 + 29^2 + 30^2 + 31^2 = 33^2 + 34^2 + 35^2 + 4^2. - Charlie Marion, Nov 10 2007
a(n) = binomial(n+1,2) + 3*binomial(n,2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=0, a(1)=1, a(2)=6. - Jaume Oliver Lafont, Dec 02 2008
a(n) = T(n) + 3*T(n-1), where T(n) is the n-th triangular number. - Vincenzo Librandi, Nov 10 2010
a(n) = a(n-1) + 4*n - 3 (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
a(n) = A007606(A000290(n)). - Reinhard Zumkeller, Feb 12 2011
a(n) = 2*a(n-1) - a(n-2) + 4. - Ant King, Aug 26 2011
a(n+1) = A045896(2*n). - Reinhard Zumkeller, Dec 12 2011
a(2^n) = 2^(2n+1) - 2^n. - Ivan N. Ianakiev, Apr 13 2013
a(n) = binomial(2*n,2). - Gary Detlefs, Jul 28 2013
a(n+1) = A128918(2*n+1). - Reinhard Zumkeller, Oct 13 2013
a(4*a(n)+7*n+1) = a(4*a(n)+7*n) + a(4*n+1). - Vladimir Shevelev, Jan 24 2014
Sum_{n>=1} 1/a(n) = 2*log(2) = 1.38629436111989...= A016627. - Vaclav Kotesovec, Apr 27 2016
Sum_{n>=1} (-1)^n/a(n) = log(2) - Pi/2. - Vaclav Kotesovec, Apr 20 2018
a(n+1) = trinomial(2*n+1, 2) = trinomial(2*n+1, 4*n), for n >= 0, with the trinomial irregular triangle A027907. a(n+1) = (n+1)*(2*n+1) = (1/Pi)*Integral_{x=0..2} (1/sqrt(4 - x^2))*(x^2 - 1)^(2*n+1)*R(4*n-2, x) with the R polynomial coefficients given in A127672. [Comtet, p. 77, the integral formula for q=3, n -> 2*n+1, k = 2, rewritten with x = 2*cos(phi)]. - Wolfdieter Lang, Apr 19 2018
Sum_{n>=1} 1/(a(n))^2 = 2*Pi^2/3-8*log(2) = 1.0345588... = 10*A182448 - A257872. - R. J. Mathar, Sep 12 2019
a(n) = (A005408(n-1) + A046092(n-1) + A001844(n-1))/2. - Ralf Steiner, Feb 27 2020
Product_{n>=2} (1 - 1/a(n)) = 2/3. - Amiram Eldar, Jan 21 2021
a(n) = floor(Sum_{k=(n-1)^2..n^2} sqrt(k)), for n >= 1. - Amrit Awasthi, Jun 13 2021
a(n+1) = A084265(2*n), n>=0. - Hartmut F. W. Hoft, Feb 02 2022
a(n) = A000290(n) + A002378(n-1). - Charles Kusniec, Sep 11 2022

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A008836 Liouville's function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity).

Original entry on oeis.org

1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1
Offset: 1

Views

Author

Keywords

Comments

Coons and Borwein: "We give a new proof of Fatou's theorem: if an algebraic function has a power series expansion with bounded integer coefficients, then it must be a rational function. This result is applied to show that for any non-trivial completely multiplicative function from N to {-1,1}, the series sum_{n=1..infinity} f(n)z^n is transcendental over {Z}[z]; in particular, sum_{n=1..infinity} lambda(n)z^n is transcendental, where lambda is Liouville's function. The transcendence of sum_{n=1..infinity} mu(n)z^n is also proved." - Jonathan Vos Post, Jun 11 2008
Coons proves that a(n) is not k-automatic for any k > 2. - Jonathan Vos Post, Oct 22 2008
The Riemann hypothesis is equivalent to the statement that for every fixed epsilon > 0, lim_{n -> infinity} (a(1) + a(2) + ... + a(n))/n^(1/2 + epsilon) = 0 (Borwein et al., theorem 1.2). - Arkadiusz Wesolowski, Oct 08 2013

Examples

			a(4) = 1 because since bigomega(4) = 2 (the prime divisor 2 is counted twice), then (-1)^2 = 1.
a(5) = -1 because 5 is prime and therefore bigomega(5) = 1 and (-1)^1 = -1.
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 37.
  • P. Borwein, S. Choi, B. Rooney and A. Weirathmueller, The Riemann Hypothesis: A Resource for the Aficionado and Virtuoso Alike, Springer, Berlin, 2008, pp. 1-11.
  • H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
  • H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.
  • P. Ribenboim, Algebraic Numbers, p. 44.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 279.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 3.3.5 on page 99.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 112.

Crossrefs

Möbius transform of A010052.
Cf. A182448 (Dgf at s=2), A347328 (Dgf at s=3), A347329 (Dgf at s=4).

Programs

  • Haskell
    a008836 = (1 -) . (* 2) . a066829  -- Reinhard Zumkeller, Nov 19 2011
    
  • Maple
    A008836 := n -> (-1)^numtheory[bigomega](n); # Peter Luschny, Sep 15 2011
    with(numtheory): A008836 := proc(n) local i,it,s; it := ifactors(n): s := (-1)^add(it[2][i][2], i=1..nops(it[2])): RETURN(s) end:
  • Mathematica
    Table[LiouvilleLambda[n], {n, 100}] (* Enrique Pérez Herrero, Dec 28 2009 *)
    Table[If[OddQ[PrimeOmega[n]],-1,1],{n,110}] (* Harvey P. Dale, Sep 10 2014 *)
  • PARI
    {a(n) = if( n<1, 0, n=factor(n); (-1)^sum(i=1, matsize(n)[1], n[i,2]))}; /* Michael Somos, Jan 01 2006 */
    
  • PARI
    a(n)=(-1)^bigomega(n) \\ Charles R Greathouse IV, Jan 09 2013
    
  • Python
    from sympy import factorint
    def A008836(n): return -1 if sum(factorint(n).values()) % 2 else 1 # Chai Wah Wu, May 24 2022

Formula

Dirichlet g.f.: zeta(2s)/zeta(s); Dirichlet inverse of A008966.
Sum_{ d divides n } lambda(d) = 1 if n is a square, otherwise 0.
Completely multiplicative with a(p) = -1, p prime.
a(n) = (-1)^A001222(n) = (-1)^bigomega(n). - Jonathan Vos Post, Apr 16 2006
a(n) = A033999(A001222(n)). - Jaroslav Krizek, Sep 28 2009
Sum_{d|n} a(d) *(A000005(d))^2 = a(n) *Sum{d|n} A000005(d). - Vladimir Shevelev, May 22 2010
a(n) = 1 - 2*A066829(n). - Reinhard Zumkeller, Nov 19 2011
a(n) = i^(tau(n^2)-1) where tau(n) is A000005 and i is the imaginary unit. - Anthony Browne, May 11 2016
a(n) = A106400(A156552(n)). - Antti Karttunen, May 30 2017
Recurrence: a(1)=1, n > 1: a(n) = sign(1/2 - Sum_{dMats Granvik, Oct 11 2017
a(n) = Sum_{ d | n } A008683(d)*A010052(n/d). - Jinyuan Wang, Apr 20 2019
a(1) = 1; a(n) = -Sum_{d|n, d < n} mu(n/d)^2 * a(d). - Ilya Gutkovskiy, Mar 10 2021
a(n) = (-1)^A349905(n). - Antti Karttunen, Apr 26 2022
From Ridouane Oudra, Jun 02 2024: (Start)
a(n) = (-1)^A066829(n);
a(n) = (-1)^A063647(n);
a(n) = A101455(A048691(n));
a(n) = sin(tau(n^2)*Pi/2). (End)

A066872 a(n) = prime(n)^2 + 1.

Original entry on oeis.org

5, 10, 26, 50, 122, 170, 290, 362, 530, 842, 962, 1370, 1682, 1850, 2210, 2810, 3482, 3722, 4490, 5042, 5330, 6242, 6890, 7922, 9410, 10202, 10610, 11450, 11882, 12770, 16130, 17162, 18770, 19322, 22202, 22802, 24650, 26570, 27890, 29930, 32042
Offset: 1

Views

Author

Joseph L. Pe, Jan 21 2002

Keywords

Comments

From R. J. Mathar, Aug 28 2011: (Start)
There are at least three "natural" embeddings of this function into multiplicative functions b(n), c(n) and d(n):
(i) The first is b(n) = 1, 5, 10, 0, 26, 0, 50, ... (n>=1) with b(p) = p^2+1, b(p^e)=0 if e>=2, substituting zero for all composite n.
(ii) The second is c(n) = 1, 5, 10, 9, 26, 50, 50, 17, 28, 130, ... (n>=1) with c(p^e)= p^(e+1)+1.
(iii) The third is d(n) = 1, 5, 10, 5, 26, 50, 50, 5, 10, 130, ... (n>=1) with d(p^e) = p^2+1 if e>=1. (End)
For n > 1, a(n)/2 is of the form 4*k+1. - Altug Alkan, Apr 08 2016

Crossrefs

Programs

Formula

a(n) = A002522(A000040(n)). - Altug Alkan, Apr 08 2016
a(n) = A000010(A000040(n)^2) + A323599(A000040(n)^2). - Torlach Rush, Jan 25 2019
Product_{n>=1} (1 - 1/a(n)) = Pi^2/15 (A182448). - Amiram Eldar, Nov 07 2022
From Antti Karttunen, Dec 24 2024: (Start)
a(n) = 1 + A001248(n).
a(n) = A000203(A000040(n)^3) / A000203(A000040(n)). (End)

A072905 a(n) is the least k > n such that k*n is a square.

Original entry on oeis.org

4, 8, 12, 9, 20, 24, 28, 18, 16, 40, 44, 27, 52, 56, 60, 25, 68, 32, 76, 45, 84, 88, 92, 54, 36, 104, 48, 63, 116, 120, 124, 50, 132, 136, 140, 49, 148, 152, 156, 90, 164, 168, 172, 99, 80, 184, 188, 75, 64, 72, 204, 117, 212, 96, 220, 126, 228, 232, 236, 135, 244, 248
Offset: 1

Views

Author

Benoit Cloitre, Aug 10 2002

Keywords

Comments

From Peter Kagey, Jun 22 2015: (Start)
a(n) is a bijection from the positive integers to A013929 (numbers that are not squarefree). Proof:
(1) Injection: Suppose that b
(2) Surjection: Given some number k in A013929, a(A007913(k)*(A000188(k)-1)^2.) = k (End)

Examples

			12 is the smallest integer > 3 such that 3*12 = 6^2 is a perfect square, hence a(3) = 12.
		

Crossrefs

Programs

  • Haskell
    a072905 n = head [k | k <- [n + 1 ..], a010052 (k * n) == 1]
    -- Reinhard Zumkeller, Feb 07 2015
    
  • Maple
    f:= proc(n) local F,f,x,y;
         F:= ifactors(n)[2];
         x:= mul(`if`(f[2]::odd,f[1],1),f=F);
         y:= mul(f[1]^floor(f[2]/2),f=F);
         x*(y+1)^2
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 23 2015
  • Mathematica
    a[n_] := For[k = n+1, True, k++, If[IntegerQ[Sqrt[k*n]], Return[k]]]; Array[a, 100] (* Jean-François Alcover, Jan 26 2018 *)
  • PARI
    a(n)=if(n<0,0,s=n+1; while(issquare(s*n)==0,s++); s)
    
  • PARI
    a(n)=my(c=core(n)); (sqrtint(n/c)+1)^2*c \\ Charles R Greathouse IV, Jun 23 2015
    
  • Ruby
    def a(n)
      k = Math.sqrt(n).to_i
      k -= 1 until n % k**2 == 0
      n + 2*n/k + n/(k**2)
    end # Peter Kagey, Jul 27 2015

Formula

a(n) = n + A067722(n). - Peter Kagey, Feb 05 2015
a(n) = A007913(n)*(A000188(n)+1)^2. - Peter Kagey, Feb 06 2015
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 + 2*zeta(3)/zeta(2) + Pi^2/15 = 3.11949956554216757204... . - Amiram Eldar, Feb 17 2024

A252895 Numbers with an odd number of square divisors.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 96, 97
Offset: 1

Author

Walker Dewey Anderson, Mar 22 2015

Keywords

Comments

Open lockers in the locker problem where the student numbers are the set of perfect squares.
The locker problem is a classic mathematical problem. Imagine a row containing an infinite number of lockers numbered from one to infinity. Also imagine an infinite number of students numbered from one to infinity. All of the lockers begin closed. The first student opens every locker that is a multiple of one, which is every locker. The second student closes every locker that is a multiple of two, so all of the even-numbered lockers are closed. The third student opens or closes every locker that is a multiple of three. This process continues for all of the students. [This is sometimes called the light switch problem - see A360845.]
A variant on the locker problem is when not all student numbers are considered; in the case of this sequence, only the square-numbered students open and close lockers. The sequence here is a list of the open lockers after all of the students have gone.
n is in the sequence if and only if it is the product of a squarefree number (A005117) and a fourth power (A000583). - Robert Israel, Apr 07 2015
Let D be the multiset containing d0(k), the divisor counting function, for each divisor k of n. n is in the sequence if and only if D admits a partition into two parts A and B such that the sum of the elements of A is exactly one more or less than the sum of the elements of B. For example, if n = 80, we have D = {1, 2, 2, 3, 4, 4, 5, 6, 8, 10}, and A = {1, 2, 3, 4, 4, 8} and B = {2, 5, 6, 10}. The sum of A is 22, and the sum of B is 23. - Griffin N. Macris, Oct 10 2016
From Amiram Eldar, Jul 07 2020: (Start)
Numbers k such that the largest square dividing k (A008833) is a fourth power.
The asymptotic density of this sequence is Pi^2/15 = A182448 = 0.657973... (Cesàro, 1885). (End)
Closed under the binary operation A059897(.,.), forming a subgroup of the positive integers under A059897. - Peter Munn, Aug 01 2020

Examples

			The set of divisors of 6 is {1,2,3,6}, which contains only one perfect square: 1; therefore 6 is a term.
The set of divisors of 16 is {1,2,4,8,16}, which contains three perfect squares: 1, 4, and 16; therefore 16 is a term.
The set of divisors of 4 is {1,2,4}, which contains two perfect squares: 1 and 4; therefore 4 is not a term.
		

Crossrefs

Positions of ones in A335324.

Programs

  • Haskell
    a252895 n = a252895_list !! (n-1)
    a252895_list = filter (odd . a046951) [1..]
    -- Reinhard Zumkeller, Apr 06 2015
  • Maple
    N:= 1000: # to get all terms <= N
    S:= select(numtheory:-issqrfree, {$1..N}):
    map(s -> seq(s*i^4, i = 1 .. floor((N/s)^(1/4))), S);
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(%,list)); # Robert Israel, Apr 07 2015
  • Mathematica
    Position[Length@ Select[Divisors@ #, IntegerQ@ Sqrt@ # &] & /@ Range@ 70, Integer?OddQ] // Flatten (* _Michael De Vlieger, Mar 23 2015 *)
    a[n_] := DivisorSigma[0, Total[EulerPhi/@Select[Sqrt[Divisors[n]], IntegerQ]]]; Flatten[Position[a/@Range@100,?OddQ]] (* _Ivan N. Ianakiev, Apr 07 2015 *)
    Select[Range@ 100, OddQ@ Length@ DeleteCases[Divisors@ #, k_ /; ! IntegerQ@ Sqrt@ k] &] (* Michael De Vlieger, Oct 10 2016 *)
  • PARI
    isok(n) = sumdiv(n, d, issquare(d)) % 2; \\ Michel Marcus, Mar 22 2015
    
  • Sage
    [n for n in [1..200] if len([x for x in divisors(n) if is_square(x)])%2==1] # Tom Edgar, Mar 22 2015
    

A252849 Numbers with an even number of square divisors.

Original entry on oeis.org

4, 8, 9, 12, 18, 20, 24, 25, 27, 28, 36, 40, 44, 45, 49, 50, 52, 54, 56, 60, 63, 64, 68, 72, 75, 76, 84, 88, 90, 92, 98, 99, 100, 104, 108, 116, 117, 120, 121, 124, 125, 126, 128, 132, 135, 136, 140, 144, 147, 148
Offset: 1

Author

Walker Dewey Anderson, Mar 22 2015

Keywords

Comments

Closed lockers in the locker problem where the student numbers are the set of perfect squares.
The locker problem is a classic mathematical problem. Imagine a row containing an infinite number of lockers numbered from one to infinity. Also imagine an infinite number of students numbered from one to infinity. All of the lockers begin closed. The first student opens every locker that is a multiple of one, which is every locker. The second student closes every locker that is a multiple of two, so all of the even-numbered lockers are closed. The third student opens or closes every locker that is a multiple of three. This process continues for all of the students.
A variant on the locker problem is when not all student numbers are considered; in the case of this sequence, only the square-numbered students open and close lockers. The sequence here is a list of the closed lockers after all of the students have gone.
From Amiram Eldar, Jul 07 2020: (Start)
Numbers k such that the largest square dividing k (A008833) is not a fourth power.
The asymptotic density of this sequence is 1 - Pi^2/15 = 1 - A182448 = 0.342026... (Cesàro, 1885). (End)
Closed under application of A331590: for n, k >= 1, A331590(a(n), k) is in the sequence. - Peter Munn, Sep 18 2020

Crossrefs

Complement of A252895.
A046951, A335324 are used in a formula defining this sequence.
Disjoint union of A336593 and A336594.
A030140, A038109, A082293, A217319 are subsequences.
Ordered 3rd trisection of A225546.

Programs

Formula

From Peter Munn, Sep 18 2020: (Start)
Numbers k such that A046951(k) mod 2 = 0.
Numbers k such that A335324(k) > 1.
(End)

A347328 Decimal expansion of zeta(6) / zeta(3).

Original entry on oeis.org

8, 4, 6, 3, 3, 5, 1, 9, 3, 7, 0, 8, 6, 9, 4, 9, 0, 2, 9, 9, 4, 8, 9, 5, 7, 3, 6, 7, 3, 5, 9, 7, 9, 7, 8, 3, 2, 3, 6, 8, 0, 2, 9, 3, 8, 2, 7, 2, 2, 6, 3, 7, 1, 0, 3, 4, 2, 3, 4, 5, 3, 6, 2, 0, 8, 7, 4, 2, 8, 3, 1, 0, 3, 4, 0, 8, 5, 6, 9, 7, 7, 7, 6, 1, 0, 5, 9
Offset: 0

Author

Sean A. Irvine, Aug 26 2021

Keywords

Examples

			0.84633519370869490299489573673597978323680...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[6] / Zeta[3], 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)

Formula

Equals Sum_{k>=1} A008836(k) / k^3.
Equals Product_{p prime} 1/(1+p^(-3)). [corrected by Amiram Eldar, Jun 06 2023]

A365171 The number of divisors d of n such that gcd(d, n/d) is a square.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4
Offset: 1

Author

Amiram Eldar, Aug 25 2023

Keywords

Comments

The sum of these divisors is A365172(n).

Programs

  • Mathematica
    f[p_, e_] := Floor[(e + 3)/4] + Floor[(e + 4)/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x+3)\4 + (x+4)\4, factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/((1 - X)^2 * (1 + X^2)))[n], ", ")) \\ Vaclav Kotesovec, Jan 20 2024

Formula

Multiplicative with a(p^e) = floor((e + 3)/4) + floor((e + 4)/4) = A004524(e+3).
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
a(n) >= A034444(n), with equality if and only if n is not a biquadrateful number (A046101).
a(n) == 1 (mod 2) if and only if n is a fourth power (A000583).
From Vaclav Kotesovec, Jan 20 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/(p^(2*s) + 1)).
Let f(s) = Product_{p prime} (1 - 1/(p^(2*s) + 1)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/(p^2 + 1)) = Pi^2/15 = A182448,
f'(1) = f(1) * Sum_{p prime} 2*log(p) / (p^2 + 1) = f(1) * 0.8852429263675811068149340172820329246145172848406469350087715037483367369...
and gamma is the Euler-Mascheroni constant A001620. (End)

A347329 Decimal expansion of Pi^4/105.

Original entry on oeis.org

9, 2, 7, 7, 0, 5, 6, 2, 8, 8, 9, 5, 2, 6, 1, 3, 0, 7, 0, 1, 3, 7, 1, 7, 4, 5, 4, 1, 7, 8, 1, 4, 3, 9, 1, 6, 6, 6, 4, 0, 7, 2, 2, 4, 4, 5, 0, 1, 7, 6, 5, 9, 2, 0, 8, 7, 1, 1, 2, 2, 4, 7, 0, 3, 8, 0, 6, 7, 4, 8, 1, 3, 8, 7, 4, 5, 4, 4, 7, 2, 5, 6, 2, 0, 2, 0, 8
Offset: 0

Author

Sean A. Irvine, Aug 26 2021

Keywords

Examples

			0.9277056288952613070137174541781439166640...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^4/105, 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)

Formula

Equals zeta(8) / zeta(4).
Equals Sum_{k>=1} A008836(k) / k^4.
Equals Product_{p prime} 1/(1+p^(-4)). [corrected by Amiram Eldar, Jun 06 2023]

A347330 Decimal expansion of zeta(10) / zeta(5).

Original entry on oeis.org

9, 6, 5, 3, 4, 6, 4, 9, 6, 0, 9, 1, 6, 3, 6, 0, 3, 6, 2, 1, 3, 7, 7, 2, 9, 6, 4, 2, 4, 3, 2, 2, 1, 2, 2, 4, 7, 4, 0, 5, 0, 1, 6, 0, 5, 3, 1, 8, 7, 3, 0, 1, 8, 0, 1, 5, 7, 5, 6, 4, 6, 4, 7, 2, 6, 8, 8, 1, 8, 6, 5, 2, 4, 4, 3, 9, 9, 0, 6, 4, 8, 0, 5, 4, 8, 3, 8
Offset: 0

Author

Sean A. Irvine, Aug 26 2021

Keywords

Examples

			0.96534649609163603621377296424322122474050...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[10] / Zeta[5], 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)

Formula

Equals Sum_{k>=1} A008836(k) / k^5.
Equals Product_{p prime} 1/(1+p^(-5)). [corrected by Amiram Eldar, Jun 06 2023]
Equals 1/A157291. - R. J. Mathar, Jul 20 2025
Showing 1-10 of 15 results. Next