cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A008836 Liouville's function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity).

Original entry on oeis.org

1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1
Offset: 1

Views

Author

Keywords

Comments

Coons and Borwein: "We give a new proof of Fatou's theorem: if an algebraic function has a power series expansion with bounded integer coefficients, then it must be a rational function. This result is applied to show that for any non-trivial completely multiplicative function from N to {-1,1}, the series sum_{n=1..infinity} f(n)z^n is transcendental over {Z}[z]; in particular, sum_{n=1..infinity} lambda(n)z^n is transcendental, where lambda is Liouville's function. The transcendence of sum_{n=1..infinity} mu(n)z^n is also proved." - Jonathan Vos Post, Jun 11 2008
Coons proves that a(n) is not k-automatic for any k > 2. - Jonathan Vos Post, Oct 22 2008
The Riemann hypothesis is equivalent to the statement that for every fixed epsilon > 0, lim_{n -> infinity} (a(1) + a(2) + ... + a(n))/n^(1/2 + epsilon) = 0 (Borwein et al., theorem 1.2). - Arkadiusz Wesolowski, Oct 08 2013

Examples

			a(4) = 1 because since bigomega(4) = 2 (the prime divisor 2 is counted twice), then (-1)^2 = 1.
a(5) = -1 because 5 is prime and therefore bigomega(5) = 1 and (-1)^1 = -1.
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 37.
  • P. Borwein, S. Choi, B. Rooney and A. Weirathmueller, The Riemann Hypothesis: A Resource for the Aficionado and Virtuoso Alike, Springer, Berlin, 2008, pp. 1-11.
  • H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
  • H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.
  • P. Ribenboim, Algebraic Numbers, p. 44.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 279.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 3.3.5 on page 99.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 112.

Crossrefs

Möbius transform of A010052.
Cf. A182448 (Dgf at s=2), A347328 (Dgf at s=3), A347329 (Dgf at s=4).

Programs

  • Haskell
    a008836 = (1 -) . (* 2) . a066829  -- Reinhard Zumkeller, Nov 19 2011
    
  • Maple
    A008836 := n -> (-1)^numtheory[bigomega](n); # Peter Luschny, Sep 15 2011
    with(numtheory): A008836 := proc(n) local i,it,s; it := ifactors(n): s := (-1)^add(it[2][i][2], i=1..nops(it[2])): RETURN(s) end:
  • Mathematica
    Table[LiouvilleLambda[n], {n, 100}] (* Enrique Pérez Herrero, Dec 28 2009 *)
    Table[If[OddQ[PrimeOmega[n]],-1,1],{n,110}] (* Harvey P. Dale, Sep 10 2014 *)
  • PARI
    {a(n) = if( n<1, 0, n=factor(n); (-1)^sum(i=1, matsize(n)[1], n[i,2]))}; /* Michael Somos, Jan 01 2006 */
    
  • PARI
    a(n)=(-1)^bigomega(n) \\ Charles R Greathouse IV, Jan 09 2013
    
  • Python
    from sympy import factorint
    def A008836(n): return -1 if sum(factorint(n).values()) % 2 else 1 # Chai Wah Wu, May 24 2022

Formula

Dirichlet g.f.: zeta(2s)/zeta(s); Dirichlet inverse of A008966.
Sum_{ d divides n } lambda(d) = 1 if n is a square, otherwise 0.
Completely multiplicative with a(p) = -1, p prime.
a(n) = (-1)^A001222(n) = (-1)^bigomega(n). - Jonathan Vos Post, Apr 16 2006
a(n) = A033999(A001222(n)). - Jaroslav Krizek, Sep 28 2009
Sum_{d|n} a(d) *(A000005(d))^2 = a(n) *Sum{d|n} A000005(d). - Vladimir Shevelev, May 22 2010
a(n) = 1 - 2*A066829(n). - Reinhard Zumkeller, Nov 19 2011
a(n) = i^(tau(n^2)-1) where tau(n) is A000005 and i is the imaginary unit. - Anthony Browne, May 11 2016
a(n) = A106400(A156552(n)). - Antti Karttunen, May 30 2017
Recurrence: a(1)=1, n > 1: a(n) = sign(1/2 - Sum_{dMats Granvik, Oct 11 2017
a(n) = Sum_{ d | n } A008683(d)*A010052(n/d). - Jinyuan Wang, Apr 20 2019
a(1) = 1; a(n) = -Sum_{d|n, d < n} mu(n/d)^2 * a(d). - Ilya Gutkovskiy, Mar 10 2021
a(n) = (-1)^A349905(n). - Antti Karttunen, Apr 26 2022
From Ridouane Oudra, Jun 02 2024: (Start)
a(n) = (-1)^A066829(n);
a(n) = (-1)^A063647(n);
a(n) = A101455(A048691(n));
a(n) = sin(tau(n^2)*Pi/2). (End)

A182448 Decimal expansion of Pi^2/15.

Original entry on oeis.org

6, 5, 7, 9, 7, 3, 6, 2, 6, 7, 3, 9, 2, 9, 0, 5, 7, 4, 5, 8, 8, 9, 6, 6, 0, 6, 6, 6, 5, 8, 4, 1, 0, 0, 7, 5, 6, 8, 7, 5, 7, 9, 9, 6, 0, 4, 8, 2, 7, 1, 9, 3, 7, 5, 0, 9, 4, 2, 2, 3, 2, 9, 1, 7, 4, 8, 0, 0, 2, 9, 8, 8, 1, 6, 1, 2, 8, 0, 3, 4, 9, 5, 3, 3, 4, 5, 1, 5, 6, 0, 2, 4, 7, 9, 0, 3, 4, 8, 2, 1, 2, 1, 6, 0, 1
Offset: 0

Views

Author

Mats Granvik, Apr 29 2012

Keywords

Examples

			0.65797362673929...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n + 0)^2 - 1/(n + 1)^2 + 1/(n + 2)^2 - 1/(n + 3)^2 - 4/(n + 4)^2 - 1/(n + 5)^2 + 1/(n + 6)^2 - 1/(n + 7)^2 + 1/(n + 8)^2 + 4/(n + 9)^2, {n, 1, Infinity, 10}], 90]][[1]]
    RealDigits[N[Sum[LiouvilleLambda[n]/n^2, {n, 1, Infinity}], 90]][[1]]
    RealDigits[Pi^2/15,10,120][[1]] (* Harvey P. Dale, May 28 2017 *)
  • PARI
    Pi^2/15 \\ Michel Marcus, Oct 21 2014

Formula

See Mathematica code.
Equals Gamma(4)*zeta(4)/Pi^2 = zeta(4)/zeta(2) = A013662/A013661 = Product_{p prime} (p^2/(p^2+1)). - Stanislav Sykora, Oct 21 2014
Equals (1/10) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/3)^2 - 1/(n + 2/3)^2 ). - Peter Bala, Oct 31 2019
Equals Sum_{k>=1} A008836(k)/k^2. - Amiram Eldar, Jun 23 2020
Equals (1/10) * Sum_{k>=1} (5*t(k-1) + 3*t(k))/k^2, where t(k) = A010060(k) (Tóth, 2022). - Amiram Eldar, Feb 04 2024
Equals 3/5 + (1/5) * Sum_{n>=1} 1/(n^2*(n+1)^2). - Davide Rotondo, May 28 2025
Equals 1/A082020 = A164102/30 = A195055/5. - Hugo Pfoertner, May 28 2025

Extensions

Offset corrected and more terms added by Rick L. Shepherd, Jan 08 2014

A347329 Decimal expansion of Pi^4/105.

Original entry on oeis.org

9, 2, 7, 7, 0, 5, 6, 2, 8, 8, 9, 5, 2, 6, 1, 3, 0, 7, 0, 1, 3, 7, 1, 7, 4, 5, 4, 1, 7, 8, 1, 4, 3, 9, 1, 6, 6, 6, 4, 0, 7, 2, 2, 4, 4, 5, 0, 1, 7, 6, 5, 9, 2, 0, 8, 7, 1, 1, 2, 2, 4, 7, 0, 3, 8, 0, 6, 7, 4, 8, 1, 3, 8, 7, 4, 5, 4, 4, 7, 2, 5, 6, 2, 0, 2, 0, 8
Offset: 0

Views

Author

Sean A. Irvine, Aug 26 2021

Keywords

Examples

			0.9277056288952613070137174541781439166640...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^4/105, 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)

Formula

Equals zeta(8) / zeta(4).
Equals Sum_{k>=1} A008836(k) / k^4.
Equals Product_{p prime} 1/(1+p^(-4)). [corrected by Amiram Eldar, Jun 06 2023]

A347330 Decimal expansion of zeta(10) / zeta(5).

Original entry on oeis.org

9, 6, 5, 3, 4, 6, 4, 9, 6, 0, 9, 1, 6, 3, 6, 0, 3, 6, 2, 1, 3, 7, 7, 2, 9, 6, 4, 2, 4, 3, 2, 2, 1, 2, 2, 4, 7, 4, 0, 5, 0, 1, 6, 0, 5, 3, 1, 8, 7, 3, 0, 1, 8, 0, 1, 5, 7, 5, 6, 4, 6, 4, 7, 2, 6, 8, 8, 1, 8, 6, 5, 2, 4, 4, 3, 9, 9, 0, 6, 4, 8, 0, 5, 4, 8, 3, 8
Offset: 0

Views

Author

Sean A. Irvine, Aug 26 2021

Keywords

Examples

			0.96534649609163603621377296424322122474050...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[10] / Zeta[5], 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)

Formula

Equals Sum_{k>=1} A008836(k) / k^5.
Equals Product_{p prime} 1/(1+p^(-5)). [corrected by Amiram Eldar, Jun 06 2023]
Equals 1/A157291. - R. J. Mathar, Jul 20 2025

A347331 Decimal expansion of 691 * Pi^6 / 675675.

Original entry on oeis.org

9, 8, 3, 1, 9, 4, 4, 8, 3, 6, 8, 0, 0, 7, 6, 0, 2, 1, 7, 3, 8, 0, 8, 6, 5, 5, 8, 7, 2, 1, 0, 1, 5, 5, 0, 3, 1, 8, 9, 0, 2, 9, 2, 1, 0, 6, 4, 7, 1, 3, 5, 4, 0, 0, 3, 2, 6, 0, 2, 0, 1, 2, 1, 4, 3, 6, 3, 5, 4, 5, 9, 9, 1, 4, 0, 2, 1, 3, 8, 5, 6, 5, 5, 5, 2, 4, 0
Offset: 0

Views

Author

Sean A. Irvine, Aug 26 2021

Keywords

Examples

			0.9831944836800760217380865587210155031...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[691 * Pi^6 / 675675, 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)

Formula

Equals zeta(12) / zeta(6).
Equals Sum_{k>=1} A008836(k) / k^6.
Equals Product_{p prime} 1/(1+p^(-6)). [corrected by Amiram Eldar, Jun 06 2023]

Extensions

Data corrected by Amiram Eldar, Jun 06 2023

A372950 a(n) = Sum_{1 <= x_1, x_2 <= n} ( n/gcd(x_1, x_2, n) )^3.

Original entry on oeis.org

1, 25, 217, 793, 3001, 5425, 16465, 25369, 52705, 75025, 159721, 172081, 369097, 411625, 651217, 811801, 1414945, 1317625, 2469241, 2379793, 3572905, 3993025, 6424177, 5505073, 9378001, 9227425, 12807289, 13056745, 20486761, 16280425, 28599361, 25977625, 34659457
Offset: 1

Views

Author

Seiichi Manyama, May 18 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(5*e+5) - p^(5*e+3) + p^3 - 1)/(p^5-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^3*sigma(d, 5));

Formula

a(n) = Sum_{d|n} mu(n/d) * (n/d)^3 * sigma_5(d).
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = (p^(5*e+5) - p^(5*e+3) + p^3 - 1)/(p^5-1).
Dirichlet g.f.: zeta(s)*zeta(s-5)/zeta(s-3).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = zeta(6)/zeta(3) = 0.846335... (A347328). (End)
Dirichlet convolution of A334659 and A001160. - R. J. Mathar, Jul 14 2025

A159253 a(n) is the smallest positive integer not yet in the sequence such that n * a(n) is a cube.

Original entry on oeis.org

1, 4, 9, 2, 25, 36, 49, 8, 3, 100, 121, 18, 169, 196, 225, 32, 289, 12, 361, 50, 441, 484, 529, 72, 5, 676, 27, 98, 841, 900, 961, 16, 1089, 1156, 1225, 6, 1369, 1444, 1521, 200, 1681, 1764, 1849, 242, 75, 2116, 2209, 288, 7, 20, 2601, 338, 2809, 108, 3025, 392
Offset: 1

Views

Author

Keywords

Comments

This is a self-inverse permutation of the positive integers.

Crossrefs

Cf. A064429 (function on exponents)

Programs

  • Mathematica
    f[p_, e_] := If[(r = Mod[e, 3]) == 0, p^e, p^(e - (-1)^r)]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
  • PARI
    a(n) = {my(f = factor(n), r); prod(i = 1, #f~, r=f[i,2]%3; f[i,1]^if(r == 0, f[i,2], f[i,2]-(-1)^r));} \\ Amiram Eldar, Dec 01 2022

Formula

Multiplicative with a(p^(3*n)) = p^(3*n), a(p^(3*n+1)) = p^(3*n+2), and a(p^(3*n+2)) = p^(3*n+1).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(6)/(3*zeta(3))) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = A347328 * A330596 / 3 = 0.2111705... . - Amiram Eldar, Dec 01 2022

A376742 Decimal expansion of Product_{p prime} (p^3 + 1)/(p^3 - 1).

Original entry on oeis.org

1, 4, 2, 0, 3, 0, 8, 3, 0, 3, 4, 8, 9, 1, 9, 3, 3, 5, 3, 2, 4, 8, 1, 8, 4, 4, 2, 7, 0, 6, 5, 4, 9, 0, 0, 6, 7, 5, 8, 6, 3, 9, 4, 6, 7, 1, 6, 3, 6, 8, 5, 6, 1, 8, 6, 8, 8, 2, 3, 5, 4, 3, 0, 6, 2, 1, 4, 2, 2, 9, 5, 4, 8, 4, 3, 6, 3, 4, 1, 7, 8, 3, 9, 2, 6, 4, 3, 1, 6, 8, 4, 0, 6, 1, 7, 3, 6, 4, 0, 5
Offset: 1

Views

Author

Stefano Spezia, Oct 03 2024

Keywords

Examples

			1.420308303489193353248184427065490...
		

References

  • E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, second revised (Heath-Brown) edition, Oxford University Press, 1986. See equation 1.2.8 at p. 5.

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[3]^2/Zeta[6],10,100][[1]]
  • PARI
    prodeulerrat((p^3 + 1)/(p^3 - 1))

Formula

Equals zeta(3)^2/zeta(6) = Sum_{k>=1} 2^omega(k)/k^3. See Titchmarsh and Shamos.
Equals 945*zeta(3)^2/Pi^6.
Equals A157289 / A088453 = A013664 / A347328^2. - R. J. Mathar, Jul 14 2025
Showing 1-8 of 8 results.