cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A376845 Decimal expansion of Product_{p prime} (p^5 + 1)/(p^5 - 1).

Original entry on oeis.org

1, 0, 7, 4, 1, 5, 0, 8, 4, 5, 6, 7, 2, 0, 3, 8, 3, 6, 4, 6, 9, 7, 5, 0, 6, 2, 1, 4, 7, 5, 5, 6, 1, 6, 4, 7, 6, 6, 6, 4, 5, 7, 5, 7, 3, 2, 5, 0, 0, 5, 6, 5, 3, 3, 4, 6, 5, 0, 8, 0, 8, 6, 5, 1, 0, 1, 7, 8, 6, 1, 0, 9, 3, 2, 4, 1, 2, 4, 8, 1, 2, 3, 8, 3, 4, 2, 9, 4, 0, 0, 1, 3, 4, 6, 7, 0, 6, 1, 2, 4
Offset: 1

Views

Author

Stefano Spezia, Oct 06 2024

Keywords

Examples

			1.0741508456720383646975062147556164766645757325...
		

References

  • E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, second revised (Heath-Brown) edition, Oxford University Press, 1986. See equation 1.2.8 at p. 5.

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[5]^2/Zeta[10],10,100][[1]]
  • PARI
    prodeulerrat((p^5 + 1)/(p^5 - 1))

Formula

Equals zeta(5)^2/zeta(10) = Sum_{k>=1} 2^omega(k)/k^5. See Titchmarsh and Shamos.

A385809 Decimal expansion of the Product_{p prime} (p^3-1)/(p^3+1).

Original entry on oeis.org

7, 0, 4, 0, 7, 2, 4, 8, 7, 3, 2, 0, 7, 8, 4, 4, 7, 8, 2, 9, 6, 2, 9, 8, 1, 9, 9, 9, 7, 8, 6, 2, 4, 4, 5, 8, 0, 9, 2, 5, 8, 3, 7, 8, 1, 1, 1, 9, 9, 8, 8, 2, 9, 3, 2, 4, 2, 8, 8, 4, 6, 9, 1, 1, 8, 9, 5, 3, 7, 1, 8, 6, 8, 7, 7, 9, 9, 1, 6, 3, 3, 0, 9, 4, 9, 4, 9, 0, 7, 4, 2, 0, 3, 0, 8, 2, 8, 1, 3, 9, 7, 5, 4, 1, 9, 9, 5, 5, 0, 8
Offset: 0

Views

Author

Artur Jasinski, Aug 01 2025

Keywords

Comments

Product_{p prime} (p^(2*n)-1)/(p^(2*n)+1) are rational numbers A114362(n)/A114363(n) = zeta(4*n)/zeta(2*n)^2.
Product_{p prime} (p^(2*n+1)-1)/(p^(2*n+1)+1) = zeta(2*(2*n+1))/zeta(2*n+1)^2.

Examples

			0.70407248732078447829629819997862445809258378...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[6]/Zeta[3]^2,10,105][[1]]
  • PARI
    prodeulerrat((p^3-1)/(p^3+1))

Formula

Equals zeta(6)/zeta(3)^2.
Equals 1 / A376742. - Amiram Eldar, Aug 01 2025

Extensions

a(109) corrected by Georg Fischer, Aug 31 2025
Showing 1-2 of 2 results.