cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A084920 a(n) = (prime(n)-1)*(prime(n)+1).

Original entry on oeis.org

3, 8, 24, 48, 120, 168, 288, 360, 528, 840, 960, 1368, 1680, 1848, 2208, 2808, 3480, 3720, 4488, 5040, 5328, 6240, 6888, 7920, 9408, 10200, 10608, 11448, 11880, 12768, 16128, 17160, 18768, 19320, 22200, 22800, 24648, 26568, 27888, 29928
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2003

Keywords

Comments

Squares of primes minus 1. - Wesley Ivan Hurt, Oct 11 2013
Integers k for which there exist exactly two positive integers b such that (k+1)/(b+1) is an integer. - Benedict W. J. Irwin, Jul 26 2016

Crossrefs

Programs

Formula

a(n) = A006093(n) * A008864(n);
a(n) = A084921(n)*2, for n > 1; a(n) = A084922(n)*6, for n > 2.
Product_{n > 0} a(n)/A066872(n) = 2/5. a(n) = A001248(n) - 1. - R. J. Mathar, Feb 01 2009
a(n) = prime(n)^2 - 1 = A001248(n) - 1. - Vladimir Joseph Stephan Orlovsky, Oct 17 2009
a(n) ~ n^2*log(n)^2. - Ilya Gutkovskiy, Jul 28 2016
a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^2*H(4*p-k^2) where H() is the Hurwitz class number and p is n-th prime. - Seiichi Manyama, Dec 31 2017
a(n) = 24 * A024702(n) for n > 2. - Jianing Song, Apr 28 2019
Sum_{n>=1} 1/a(n) = A154945. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Nov 07 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = Pi^2/6 (A013661).
Product_{n>=1} (1 - 1/a(n)) = A065469. (End)

A138404 a(n) = prime(n)^5 - prime(n).

Original entry on oeis.org

30, 240, 3120, 16800, 161040, 371280, 1419840, 2476080, 6436320, 20511120, 28629120, 69343920, 115856160, 147008400, 229344960, 418195440, 714924240, 844596240, 1350125040, 1804229280, 2073071520, 3077056320, 3939040560
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2008

Keywords

Comments

Subsequence of A061167. - Bernard Schott, Feb 06 2023

Crossrefs

Programs

  • Magma
    [NthPrime((n))^5 - NthPrime((n)): n in [1..30] ]; // Vincenzo Librandi, Jun 17 2011
  • Mathematica
    a = {}; Do[p = Prime[n]; AppendTo[a, p^5 - p], {n, 1, 50}]; a
    #^5-#&/@Prime[Range[30]] (* Harvey P. Dale, Dec 25 2022 *)
  • PARI
    forprime(p=2,1e3,print1(p^5-p", ")) \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

a(n) = A050997(n) - A000040(n). - Elmo R. Oliveira, Jan 27 2023
From Bernard Schott, Feb 09 2023: (Start)
a(n) = A061167(A000040(n)).
a(n) = 30 * A138430(n).
a(n) = A000040(n) * A006093(n) * A008864(n) * A066872(n). (End)

A371458 Expansion of 1/(1 - x/(1 - 9*x^3)^(1/3)).

Original entry on oeis.org

1, 1, 1, 1, 4, 7, 10, 31, 61, 100, 274, 565, 1000, 2551, 5380, 10000, 24376, 52018, 100000, 236389, 507706, 1000000, 2313346, 4986178, 10000000, 22773334, 49180165, 100000000, 225092416, 486575935, 1000000000, 2231117230, 4824998773, 10000000000
Offset: 0

Views

Author

Seiichi Manyama, Jun 07 2024

Keywords

Crossrefs

Programs

  • Maple
    A371458 := proc(n)
        add(9^k*binomial(n/3-1,k),k=0..floor(n/3)) ;
    end proc:
    seq(A371458(n),n=0..70) ; # R. J. Mathar, Jun 07 2024
  • PARI
    a(n) = sum(k=0, n\3, 9^k*binomial(n/3-1, k));

Formula

a(3*n) = 10^(n-1) for n > 0.
a(n) = Sum_{k=0..floor(n/3)} 9^k * binomial(n/3-1,k).
D-finite with recurrence (n-1)*(n-2)*a(n) +4*(-7*n^2+48*n-86)*a(n-3) +9*(29*n-141)*(n-6)*a(n-6) -810*(n-6)*(n-9)*a(n-9)=0. - R. J. Mathar, Jun 07 2024
a(n) == 1 (mod 3). - Seiichi Manyama, Jun 11 2024

A368085 Square array read by ascending antidiagonals: row n is the trajectory of P under the 'Px+1' map, where P = n-th prime.

Original entry on oeis.org

2, 3, 5, 5, 10, 11, 7, 26, 5, 23, 11, 50, 13, 16, 47, 13, 122, 25, 66, 8, 95, 17, 170, 61, 5, 33, 4, 191, 19, 290, 85, 672, 1, 11, 2, 383, 23, 362, 145, 17, 336, 8, 56, 1, 767, 29, 530, 181, 29, 222, 168, 4, 28, 4, 1535, 31, 842, 265, 3440, 494, 111, 84, 2, 14, 2, 3071
Offset: 1

Views

Author

Paolo Xausa, Dec 11 2023

Keywords

Comments

The 'Px+1 map' is defined as follows: if there exists p = smallest prime < P which divides x then x = x/p, otherwise x = P*x + 1.

Examples

			Array begins:
  [ 1]   2,   5,  11,    23,   47,   95, 191, 383,  767, ... = A153893
  [ 2]   3,  10,   5,    16,    8,    4,   2,   1,    4, ... = A033478
  [ 3]   5,  26,  13,    66,   33,   11,  56,  28,   14, ... = A057688
  [ 4]   7,  50,  25,     5,    1,    8,   4,   2,    1, ... = A368113
  [ 5]  11, 122,  61,   672,  336,  168,  84,  42,   21, ... = A368114
  [ 6]  13, 170,  85,    17,  222,  111,  37, 482,  241, ... = A057684
  [ 7]  17, 290, 145,    29,  494,  247,  19, 324,  162, ... = A368115
  [ 8]  19, 362, 181,  3440, 1720,  860, 430, 215,   43, ... = A057685
  [ 9]  23, 530, 265,    53, 1220,  610, 305,  61, 1404, ... = A057686
  [10]  29, 842, 421, 12210, 6105, 2035, 407,  37, 1074, ... = A057687
  ...    |    |    |
      A000040 | A066885 (from n = 2)
           A066872
		

Crossrefs

Columns 1-3: A000040, A066872, A066885 (from n = 2).
Main diagonal gives A368159.

Programs

  • Mathematica
    Px1[p_,n_]:=Catch[For[i=1,iA368085list[dmax_]:=With[{a=Reverse[Table[NestList[Px1[Prime[n],#]&,Prime[n],dmax-n],{n,dmax}]]},Array[Diagonal[a,#]&,dmax,1-dmax]];
    A368085list[15] (* Generates 15 antidiagonals *)

A182200 a(n) = prime(n)^2-3.

Original entry on oeis.org

1, 6, 22, 46, 118, 166, 286, 358, 526, 838, 958, 1366, 1678, 1846, 2206, 2806, 3478, 3718, 4486, 5038, 5326, 6238, 6886, 7918, 9406, 10198, 10606, 11446, 11878, 12766, 16126, 17158, 18766, 19318, 22198, 22798, 24646, 26566, 27886, 29926, 32038, 32758, 36478
Offset: 1

Views

Author

Bruno Berselli, Apr 17 2012

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime(n)^2-3: n in [1..43]];
  • Maple
    A182200:=n->ithprime(n)^2-3; seq(A182200(k),k=1..50); # Wesley Ivan Hurt, Oct 11 2013
  • Mathematica
    Table[Prime[n]^2 - 3, {n, 43}]

Formula

a(n) = A061725(n)-5 = A066872(n)-4 = A001248(n)-3 = A084920(n)-2 = A049001(n)-1 = A166010(n)+1. [Formulas revised and extended by Bruno Berselli, Oct 15 2012]

A289320 a(n) = A289310(n)^2 + A289311(n)^2.

Original entry on oeis.org

1, 5, 10, 25, 26, 50, 50, 125, 100, 130, 122, 250, 170, 250, 260, 625, 290, 500, 362, 650, 500, 610, 530, 1250, 676, 850, 1000, 1250, 842, 1300, 962, 3125, 1220, 1450, 1300, 2500, 1370, 1810, 1700, 3250, 1682, 2500, 1850, 3050, 2600, 2650, 2210, 6250, 2500
Offset: 1

Views

Author

Rémy Sigrist, Jul 02 2017

Keywords

Comments

This sequence is totally multiplicative.
a(n) > n^2 for any n > 1.
If n is a square, then a(n) is a square.
If a(n) and a(m) are squares, then a(n*m) is a square.
a(n) is also a square for nonsquares n = 42, 168, 246, 287, 378, 672, 984, 1050, 1148, 1434, 1512, 1673, 2058, 2214, 2583, 2688, ...

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^2 + 1)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = my (f=factor(n)); return (prod(i=1, #f~, (1 + f[i,1]^2) ^ f[i,2]))
    
  • Python
    from sympy import factorint
    from operator import mul
    from functools import reduce
    def a(n): return 1 if n==1 else reduce(mul, [(1 + p**2)**k for p, k in factorint(n).items()])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Aug 03 2017

Formula

Totally multiplicative, with a(p^k) = (1 + p^2)^k for any prime p and k > 0.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/(Pi^2 * Product_{p prime} (1 - 1/p^2 - 1/p^3 - 1/p^4)) = 0.4778963213... . - Amiram Eldar, Nov 13 2022
Sum_{n>=1} 1/a(n) = 15/Pi^2 (A082020). - Amiram Eldar, Dec 15 2022

A373510 Expansion of 1/(1 - x/(1 - 25*x^5)^(1/5)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 6, 11, 16, 21, 26, 106, 211, 341, 496, 676, 2256, 4611, 7866, 12146, 17576, 51781, 106761, 188266, 302671, 456976, 1236306, 2552661, 4602416, 7620071, 11881376, 30218956, 62278561, 114056566, 193134346, 308915776, 749942856, 1540351961
Offset: 0

Views

Author

Seiichi Manyama, Jun 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, 25^k*binomial(n/5-1, k));

Formula

a(5*n) = 26^(n-1) for n > 0.
a(n) = Sum_{k=0..floor(n/5)} 25^k * binomial(n/5-1,k).
a(n) == 1 (mod 5).

A235053 Numbers k of the form p^2 + 1 (for prime p) where k^2 + 1 is also prime.

Original entry on oeis.org

10, 26, 170, 1850, 2210, 16130, 69170, 76730, 85850, 113570, 120410, 157610, 196250, 218090, 237170, 253010, 332930, 351650, 368450, 452930, 528530, 537290, 597530, 734450, 786770, 822650, 1329410, 2036330, 2211170
Offset: 1

Views

Author

Derek Orr, Jan 03 2014

Keywords

Comments

Except for 26, all numbers are divisible by 10 and the tens digit is an odd number.

Examples

			351650 = 593^2 + 1 (593 is prime) and 351650^2 + 1 is prime, so 351650 is a member of this sequence.
		

Crossrefs

Numbers in both A066872 and A005574.

Programs

  • Python
    import sympy
    from sympy import isprime
    {print(n**2+1) for n in range(10**7) if isprime(n) if isprime((n**2+1)**2+1)}

A350590 Prime numbers p such that iterating the map m -> m^2 + 1 on p generates a number ending with p.

Original entry on oeis.org

2, 5, 7, 677, 948901, 55904677, 88948901, 36414201356422028396069993813455904677, 8964456980291877636414201356422028396069993813455904677, 711873588184178964456980291877636414201356422028396069993813455904677
Offset: 1

Views

Author

Ya-Ping Lu, Jan 07 2022

Keywords

Comments

Primes in A350130. All terms, except the first two terms, end with either 1 or 7.
It takes six iterations for a term in the sequence to generate a number ending with the term itself.
If two terms, a(i) and a(j) with i < j, share the same last digit of 1 or 7, then a(j) ends with a(i). For example, a(5)=948901, a(7)=88948901, and a(11)=8941500847661758065828477233177642295842210081239701539110201588948901. a(11) ends with a(7), which ends with a(5).

Examples

			2 is a term because 2 is a prime and iterating the map on 2 gives: 2 -> 5 -> 26 -> 677 -> 458330 -> 210066388901 -> 44127887745906175987802, which ends with 2.
		

Crossrefs

Programs

  • Python
    from sympy import isprime; R = []
    for i in range(1, 100):
        m = 1; L = [m]; m = (m*m+1)%10**i
        while m not in L: L.append(m); m = (m*m+1)%10**i
        del L[:L.index(m)]; {R.append(j) for j in L if isprime(j) and j not in R}
    R.sort(); print(*R, sep = ", ")

A373511 Expansion of 1/(1 - x/(1 - 49*x^7)^(1/7)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 8, 15, 22, 29, 36, 43, 50, 253, 505, 806, 1156, 1555, 2003, 2500, 9906, 20105, 33440, 50254, 70890, 95691, 125000, 423270, 861190, 1467915, 2275001, 3316405, 4628485, 6250000, 18944976, 38420768, 66538494, 105430585, 157517592, 225524993, 312500000
Offset: 0

Views

Author

Seiichi Manyama, Jun 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\7, 49^k*binomial(n/7-1, k));

Formula

a(7*n) = 50^(n-1) for n > 0.
a(n) = Sum_{k=0..floor(n/7)} 49^k * binomial(n/7-1,k).
a(n) == 1 (mod 7).
Showing 1-10 of 19 results. Next