cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A368159 The n-th term in the trajectory of the n-th prime P under the 'Px+1' map.

Original entry on oeis.org

2, 10, 13, 5, 336, 111, 19, 215, 1404, 537, 318, 19, 1, 1, 12, 19, 1, 41231, 103, 18, 1, 10, 42, 3120474, 32580, 17, 26, 351348, 260402, 38082, 128, 60457, 138, 140, 547278, 6869, 1, 164, 21, 87, 90, 16245, 12, 194, 33, 90645, 106, 224, 1, 230, 1, 60, 121, 1
Offset: 1

Views

Author

Alois P. Heinz, Dec 13 2023

Keywords

Comments

See A057684 for definition.

Examples

			For n= 4: prime(4)  =  7 ->   50 ->  25 ->   5  = a(4).
For n= 5: prime(5)  = 11 ->  122 ->  61 -> 672 -> 336  = a(5).
For n= 6: prime(6)  = 13 ->  170 ->  85 ->  17 -> 222 -> 111  = a(6).
For n=13: prime(13) = 41 -> 1682 -> 841 ->  29 ->   1 ->  42 ->
                      21 ->    7 ->   1 ->  42 ->  21 ->   7 -> 1 = a(13).
		

Crossrefs

Main diagonal of A368085.

Programs

  • Mathematica
    Px1[p_, n_]:=Catch[For[i=1, iA368159[n_]:=Nest[Px1[Prime[n], #]&, Prime[n],n-1];
    Array[A368159,100] (* Paolo Xausa, Dec 14 2023 *)

Formula

a(n) = A368085(n,n).

A368113 Trajectory of 7 under the '7x+1' map.

Original entry on oeis.org

7, 50, 25, 5, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1
Offset: 0

Views

Author

Paolo Xausa, Dec 12 2023

Keywords

Comments

See A368085 for definition and cross references.

Crossrefs

Cf. A368085.

Programs

  • Mathematica
    PadRight[{7,50,25,5},100,{1,8,4,2}]

A368114 Trajectory of 11 under the '11x+1' map.

Original entry on oeis.org

11, 122, 61, 672, 336, 168, 84, 42, 21, 7, 1, 12, 6, 3, 1, 12, 6, 3, 1, 12, 6, 3, 1, 12, 6, 3, 1, 12, 6, 3, 1, 12, 6, 3, 1, 12, 6, 3, 1, 12, 6, 3, 1, 12, 6, 3, 1, 12, 6, 3, 1, 12, 6, 3, 1, 12, 6, 3, 1, 12, 6, 3, 1, 12, 6, 3, 1, 12, 6, 3, 1, 12, 6, 3, 1, 12, 6, 3, 1
Offset: 0

Views

Author

Paolo Xausa, Dec 12 2023

Keywords

Comments

See A368085 for definition and cross references.

Crossrefs

Cf. A368085.

Programs

  • Mathematica
    Px1[p_,n_]:=Catch[For[i=1,i
    				

Formula

G.f.: (11 + 122*x + 61*x^2 + 672*x^3 + 325*x^4 + 46*x^5 + 23*x^6 - 630*x^7 - 315*x^8 - 161*x^9 - 83*x^10 - 30*x^11 - 15*x^12 - 4*x^13)/(1 - x^4). - Stefano Spezia, Jun 09 2024

A368115 Trajectory of 17 under the '17x+1' map.

Original entry on oeis.org

17, 290, 145, 29, 494, 247, 19, 324, 162, 81, 27, 9, 3, 1, 18, 9, 3, 1, 18, 9, 3, 1, 18, 9, 3, 1, 18, 9, 3, 1, 18, 9, 3, 1, 18, 9, 3, 1, 18, 9, 3, 1, 18, 9, 3, 1, 18, 9, 3, 1, 18, 9, 3, 1, 18, 9, 3, 1, 18, 9, 3, 1, 18, 9, 3, 1, 18, 9, 3, 1, 18, 9, 3, 1, 18, 9, 3, 1
Offset: 0

Views

Author

Paolo Xausa, Dec 12 2023

Keywords

Comments

See A368085 for definition and cross references.

Crossrefs

Cf. A368085.

Programs

  • Mathematica
    Px1[p_,n_]:=Catch[For[i=1,i
    				
Showing 1-4 of 4 results.