cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A030516 Numbers with 7 divisors. 6th powers of primes.

Original entry on oeis.org

64, 729, 15625, 117649, 1771561, 4826809, 24137569, 47045881, 148035889, 594823321, 887503681, 2565726409, 4750104241, 6321363049, 10779215329, 22164361129, 42180533641, 51520374361, 90458382169, 128100283921
Offset: 1

Views

Author

Keywords

Comments

These are the numbers p^6 with p prime. - Jorge Coveiro, Apr 13 2004
The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008

Crossrefs

Programs

Formula

a(n) = A000040(n)^(7-1) = A000040(n)^6. - Omar E. Pol, May 06 2008
A056595(a(n)) = 3. - Reinhard Zumkeller, Aug 15 2011
Sum_{n>=1} 1/a(n) = P(6) = 0.0170700868... (A085966). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(6)/zeta(12) = 675675/(691*Pi^6) (A269404).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(6) = 945/Pi^6 = 1/A013664. (End)

A113851 Numbers whose prime factors are raised to the sixth power.

Original entry on oeis.org

64, 729, 15625, 46656, 117649, 1000000, 1771561, 4826809, 7529536, 11390625, 24137569, 47045881, 85766121, 113379904, 148035889, 308915776, 594823321, 729000000, 887503681, 1291467969, 1544804416, 1838265625, 2565726409, 3010936384, 3518743761, 4750104241
Offset: 1

Views

Author

Cino Hilliard, Jan 25 2006

Keywords

Crossrefs

Subset of A001014. Superset of A030516.
Nonunit terms of A329332 column 6 in ascending order.

Programs

  • Maple
    for n from 2 to 100 do if(numtheory[issqrfree](n))then printf("%d, ", n^6): fi: od: # Nathaniel Johnston, Jun 21 2011
  • Mathematica
    Select[ Range@37^6, Union[Last /@ FactorInteger@# ] == {6} &] (* Robert G. Wilson v *)
    Select[Range[2, 37], SquareFreeQ]^6 (* Amiram Eldar, Oct 13 2020 *)
  • Python
    from math import isqrt
    from sympy import mobius
    def A113851(n):
        def f(x): return int(n+1-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**6 # Chai Wah Wu, Feb 25 2025

Formula

a(n) = A005117(n+1)^6. - Nathaniel Johnston, Jun 21 2011
Sum_{n>=1} 1/a(n) = zeta(6)/zeta(12) - 1 = A269404 - 1. - Amiram Eldar, Oct 13 2020

Extensions

More terms from Robert G. Wilson v, Jan 26 2006
Showing 1-2 of 2 results.