cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A113877 Semiprimes to semiprime powers.

Original entry on oeis.org

256, 1296, 4096, 6561, 10000, 38416, 46656, 50625, 194481, 234256, 262144, 390625, 456976, 531441, 1000000, 1048576, 1185921, 1336336, 1500625, 2085136, 2313441, 4477456, 5764801, 6765201, 7529536, 9150625, 10077696, 10556001, 11316496, 11390625, 14776336
Offset: 1

Views

Author

Jonathan Vos Post, Jan 27 2006

Keywords

Comments

This is the semiprime analog of A053810.

Examples

			a(1) = 256 = 4^4 = semiprime(1)^semiprime(1).
a(2) = 1296 = 6^4 = semiprime(2)^semiprime(1).
a(3) = 4096 = 4^6 = semiprime(1)^semiprime(2).
a(4) = 6561 = 9^4 = semiprime(3)^semiprime(1).
a(5) = 10000 = 10^4.
		

Crossrefs

Programs

  • Mathematica
    lim = 10^8; s = Select[Range[lim^(1/4)], Total[Transpose[FactorInteger[#]][[2]]] == 2 &]; t = {}; j = 1; While[b = s[[j]]; i = 1; While[a = s[[i]]; e = a^b; If[e <= lim, AppendTo[t, e]]; e < lim && i < Length[s], i++]; i > 1, j++]; t = Union[t] (* T. D. Noe, Jun 05 2013 *)
  • PARI
    is(n)=my(b,e=ispower(n,,&b),o); if(e==0,return(0)); o=bigomega(e); (o==2 && bigomega(b)==2) || (e%2==0 && o==3 && isprime(b)) \\ Charles R Greathouse IV, Jun 05 2013
    
  • PARI
    list(lim)=my(v=List());for(e=4,log(lim\=1+.5)\log(4), if(bigomega(e)!=2, next); for(b=4,(lim+.5)^(1/e), if(bigomega(b)==2, listput(v,b^e)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 05 2013
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot, factorint
    def A113877(n):
        def A072000(n): return int(-((t:=primepi(s:=isqrt(n)))*(t-1)>>1)+sum(primepi(n//p) for p in primerange(s+1)))
        def f(x): return int(n+x-sum(A072000(integer_nthroot(x, p)[0]) for p in range(4,x.bit_length()) if sum(factorint(p).values())==2))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

Formula

{a(n)} = {a^b where a and b are elements of A001358}.
{a(n)} = {(p*q)^(r*s) = (p^(r*s))*(q^r*s) for distinct primes p, q, r, s} UNION {(p*q)^(p*r) = (p^(p*r))*(q^(p*r)) for distinct primes p, q, r} UNION {(p*q)^(r*r) = (p^(r^2))*(q^(r^2)) for distinct primes p, q, r} UNION {(p*q)^(p*q)= (p^(p*q))*(q^(p*q)) for distinct primes p, q} UNION {(p^2)^(p^2) = p^(2*(p^2)) for prime p}.
a(n) ~ (n log n/log log n)^4. - Charles R Greathouse IV, Jun 05 2013

Extensions

Terms corrected by Charles R Greathouse IV, Jun 05 2013
Showing 1-1 of 1 results.