cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113857 a(n) = binomial(4+2*n, n) * binomial(9+2*n, 4+n).

Original entry on oeis.org

126, 2772, 48048, 772200, 12033450, 184940756, 2824549728, 43028530272, 655081791000, 9977399586000, 152112583402560, 2322021633001200, 35496198345658050, 543418421128852500, 8331507823355640000, 127919340117331963200, 1966759854303978934200, 30279186980267369086800
Offset: 0

Views

Author

Zerinvary Lajos, Feb 02 2006

Keywords

Comments

If one uses the "table" view of array A062190, the sequence appears as the fourth column right from the middle in the "formatted as a triangular array" subpanel.

Examples

			a(0) = C(4+2*n,n)*C(9+2*n,4+n) = C(4,0)*C(9,4) = 1*126 = 126.
a(7) = C(4+2*7,7)*C(9+2*7,4+7) = C(18,7)*C(23,11) = 31824*1352078 = 43028530272.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Binomial[4+2*n, n] * Binomial[9+2*n, 4+n]; Array[a, 20, 0] (* Amiram Eldar, Sep 05 2025 *)
  • PARI
    a(n)={binomial(4+2*n, n) * binomial(9+2*n, 4+n)} \\ Andrew Howroyd, Jan 07 2020

Formula

a(n) = A062190(4+2*n, 4+n).
a(n) = A002694(n+2)*A001700(n+4). - R. J. Mathar, Nov 28 2008
a(n) ~ 2^(4*n+13) / (Pi*n). - Amiram Eldar, Sep 05 2025

Extensions

Definition rephrased by R. J. Mathar, Nov 28 2008
Edited and more terms added by Andrew Howroyd, Jan 07 2020