cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113946 Series expansion of Farey rational polynomial based on A112627.

Original entry on oeis.org

1, 5, 23, 81, 367, 1297, 5871, 20753, 93935, 332049, 1502959, 5312785, 24047343, 85004561, 384757487, 1360072977, 6156119791, 21761167633, 98497916655, 348178682129, 1575966666479, 5570858914065, 25215466663663, 89133742625041
Offset: 0

Views

Author

Roger L. Bagula, Jan 31 2006

Keywords

Comments

Polynomial expanded is constant*(x+1/2)^2*(1+2x)/(1-x-16x^2+16x^3) the Jasinski rational polynomial p[x_] = (9/32)*(x + 1/2)^3/((x - 1/4)*(x + 1/4)*(x + 1)) f[x_] := 1/p[x] /; 0 <= x <= 1/2 f[x_] := p[x] /; 1/2 < x <= 1 gives a Farey like function with maximum at 1.

Crossrefs

Cf. A112627.

Programs

  • Mathematica
    b = -(16/9)*ReplacePart[Table[Coefficient[Series[(9/32)*(x + 1/2)^3/((x - 1/4)*(x + 1/4)*(x + 1)), {x, 0, 30}], x^n], {n, 0, 30}], -9/16, 1]

Formula

b(n) = coefficient series expansion of (9/32)*(x + 1/2)^3/((x - 1/4)*(x + 1/4)*(x + 1)) a(n) = (-16/9)*b(n).
a(n) = (5*(-4)^n+4*(-1)^n+81*4^n)/60 for n>0. G.f.: -(2*x+1)^3 / ((x+1)*(4*x-1)*(4*x+1)). [Colin Barker, Dec 03 2012]
a(n) = -a(n-1)+16*a(n-2)+16*a(n-3). - Wesley Ivan Hurt, May 07 2021