cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113957 Sum of the divisors of n which are not divisible by 7.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 1, 15, 13, 18, 12, 28, 14, 3, 24, 31, 18, 39, 20, 42, 4, 36, 24, 60, 31, 42, 40, 7, 30, 72, 32, 63, 48, 54, 6, 91, 38, 60, 56, 90, 42, 12, 44, 84, 78, 72, 48, 124, 1, 93, 72, 98, 54, 120, 72, 15, 80, 90, 60, 168, 62, 96, 13, 127, 84, 144, 68, 126, 96, 18, 72
Offset: 1

Views

Author

Michael Somos, Nov 10 2005

Keywords

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 467, Entry 5(i).

Crossrefs

Cf. A028594(n)=4*a(n) if n>0.
Cf. A244600.

Programs

  • Mathematica
    f[p_, e_] := If[p == 7, 1, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
  • PARI
    a(n)=if(n<1, 0, sigma(n/7^valuation(n,7)))

Formula

a(n) is multiplicative and a(p^e) = 1, if p=7, a(p^e) = (p^(e+1)-1)/(p-1) otherwise.
G.f.: ((theta_3(z)*theta_3(7z) + theta_2(z)*theta_2(7z))^2-1)/4.
L.g.f.: log(Product_{k>=1} (1 - x^(7*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
Sum_{k=1..n} a(k) ~ (Pi^2/14) * n^2. - Amiram Eldar, Oct 04 2022
Dirichlet g.f. (1-7^(1-s))*zeta(s)*zeta(s-1). - R. J. Mathar, May 17 2023