A113957 Sum of the divisors of n which are not divisible by 7.
1, 3, 4, 7, 6, 12, 1, 15, 13, 18, 12, 28, 14, 3, 24, 31, 18, 39, 20, 42, 4, 36, 24, 60, 31, 42, 40, 7, 30, 72, 32, 63, 48, 54, 6, 91, 38, 60, 56, 90, 42, 12, 44, 84, 78, 72, 48, 124, 1, 93, 72, 98, 54, 120, 72, 15, 80, 90, 60, 168, 62, 96, 13, 127, 84, 144, 68, 126, 96, 18, 72
Offset: 1
References
- B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 467, Entry 5(i).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[p == 7, 1, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
-
PARI
a(n)=if(n<1, 0, sigma(n/7^valuation(n,7)))
Formula
a(n) is multiplicative and a(p^e) = 1, if p=7, a(p^e) = (p^(e+1)-1)/(p-1) otherwise.
G.f.: ((theta_3(z)*theta_3(7z) + theta_2(z)*theta_2(7z))^2-1)/4.
L.g.f.: log(Product_{k>=1} (1 - x^(7*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
Sum_{k=1..n} a(k) ~ (Pi^2/14) * n^2. - Amiram Eldar, Oct 04 2022
Dirichlet g.f. (1-7^(1-s))*zeta(s)*zeta(s-1). - R. J. Mathar, May 17 2023