A114034 Let f(n) be the number of sequences of 1's and 2's which sum to n. Sequence contains the string of sequences.
1, 2, 11, 12, 21, 111, 22, 112, 121, 211, 1111, 122, 212, 221, 1112, 1121, 1211, 2111, 11111, 222, 1122, 1212, 1221, 2112, 2121, 2211, 11112, 11121, 11211, 12111, 21111, 111111, 1222, 2122, 2212, 2221, 11122, 11212, 11221, 12112, 12121, 12211, 21112, 21121, 21211, 22111, 111112, 111121, 111211, 112111, 121111, 211111, 1111111
Offset: 1
Examples
The irregular triangle begins: n 1: 1; f(1) = 1. 2: 2, 11; f(2) = 2. 3: 12, 21, 111; f(3) = 3. 4: 22, 112, 121, 211, 1111; f(4) = 5. 5: 122, 212, 221, 1112, 1121, 1211, 2111, 11111; f(5) = 8. ...
Links
- N. Karimilla Bi, Amritanshu Prasad, and P. Giftson Santhosh, Residues modulo powers of two in the Young-Fibonacci lattice, arXiv:1702.06684 [math.CO], 2017. See Figure 1.
Programs
-
Mathematica
row[n_] := Select[Range[(10^n-1)/9], SubsetQ[{1,2}, DeleteDuplicates[digits = IntegerDigits[#]]] && Total[digits]==n &]; Array[row,7]//Flatten (* Stefano Spezia, Jan 14 2024 *)
Extensions
More terms from Terryjames Morris (trm5002(AT)psu.edu), Mar 09 2007
Duplicate term removed by Stefano Spezia, Jan 14 2024
Comments