cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114135 Primitive numbers n such that the sums of the digits of n, n^2 and n^3 coincide (cf. A111434).

Original entry on oeis.org

1, 468, 585, 5851, 5868, 28845, 58968, 21688965, 29588877, 37848897, 49879981, 58577797, 79898994, 79958368, 79979698, 89757468, 109699677, 159699969, 468957888, 479597652, 479896587, 480749985, 494899398, 497349981, 498678256
Offset: 1

Views

Author

Keywords

Comments

Members of A111434 not congruent to 0 (mod 10). If k is a member of A111434 then so is 10^e*k.
The authors have calculated all members below 10^11.
The number of members less than 10^n {n=0..11}: 0,1,1,3,5,7,7,7,16,34,57,125.
Number of members congruent to k (mod 10): 0,7,1,0,2,23,8,20,49,15. But more interesting, number of members are congruent to k (mod 9): 66,59,0,0,0,0,0,0,0.
A007953(n) == n mod 9. Since 0 and 1 are the only k in [0,1,...8] with k == k^2 mod 9, all terms are congruent to 0 or 1 mod 9. - Robert Israel, Jan 26 2015

Crossrefs

Programs

  • Mathematica
    sod[n_] := Plus @@ IntegerDigits@n; lst = {}; Do[ If[(Mod[n, 9] == 0 || Mod[n, 9] == 1) && Mod[n, 10] != 0 && sod@n == sod[n2] == sod[n3], AppendTo[lst, n]], {n, 108/2}]; lst
    Select[Range[5*10^8],Length[Union[Total/@IntegerDigits/@{#,#^2,#^3}]]==1 && Mod[#,10]!=0&] (* Harvey P. Dale, Jul 07 2020 *)
  • PARI
    isok(n) = (n % 10) && ((sd=sumdigits(n)) == sumdigits(n^2)) && (sd == sumdigits(n^3)); \\ Michel Marcus, Jan 20 2015