cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114136 Numbers k such that k divides the sum of digits of all numbers from 1 to k.

Original entry on oeis.org

1, 3, 5, 7, 9, 18, 21, 24, 38, 58, 78, 98, 298, 498, 501, 537, 698, 702, 707, 711, 716, 898, 1141, 1197, 1501, 1557, 1998, 2703, 2706, 2712, 2715, 3998, 4502, 4509, 4529, 4536, 5998, 7998, 8001, 8097, 9998, 29998, 36001, 36297, 49998, 54504, 54507, 54510
Offset: 1

Views

Author

David W. Wilson, Feb 02 2006

Keywords

Comments

a(n) | A037123(a(n)). Sequence is infinite, including 10^(2m)-2 for all m >= 1. For each m >= 1, there is at least one n with A037123(a(n))/a(n) = m.
Number of terms < 10^m for m >= 1: 5, 12, 22, 41, 58, 79, 105, 128, 176, 202, ..., . - Robert G. Wilson v, Jul 06 2018
Certain number forms appear repeatedly: 1(9e)8, 3(9e)8, 5(9e)8, 7(9e)8, 9(9e)8, 2(9o)8, 4(9o)8, 6(9o)8, 8(9o)8; where e represents an even number of times and o an odd number of times. - Robert G. Wilson v, Jul 06 2018

Crossrefs

Cf. A037123.

Programs

  • Mathematica
    lst = {}; k = 1; s = 0; While[k < 10001, If[ Mod[s += Plus @@ IntegerDigits@k, k++] == 0, AppendTo[lst, k -1]]]; lst (* Robert G. Wilson v, Jul 06 2018 *)
    nxt[{t_,n_}]:={t+Total[IntegerDigits[n+1]],n+1}; Select[NestList[nxt,{1,1},55000],Divisible[#[[1]],#[[2]]]&][[All,2]] (* Harvey P. Dale, Jan 18 2019 *)
  • PARI
    isok(n) = (sum(k=1, n, sumdigits(k)) % n) == 0; \\ Michel Marcus, Jul 16 2018