A114154 Triangle, read by rows, given by the product R^3*Q^-2 using triangular matrices Q=A113381, R=A113389.
1, 5, 1, 45, 8, 1, 635, 120, 11, 1, 12815, 2556, 231, 14, 1, 343815, 71548, 6556, 378, 17, 1, 11651427, 2508528, 233706, 13391, 561, 20, 1, 480718723, 106427700, 10069521, 579047, 23817, 780, 23, 1
Offset: 0
Examples
Triangle R^3*Q^-2 begins: 1; 5,1; 45,8,1; 635,120,11,1; 12815,2556,231,14,1; 343815,71548,6556,378,17,1; ... Compare to Q (A113381): 1; 2,1; 6,5,1; 37,45,8,1; 429,635,120,11,1; 7629,12815,2556,231,14,1; ... Thus R^3*Q^-2 equals Q shift left one column.
Crossrefs
Programs
-
PARI
T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^3*Q^-2)[n+1,k+1]
Comments