cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114197 A Pascal-Fibonacci triangle.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 31, 21, 6, 1, 1, 7, 31, 61, 61, 31, 7, 1, 1, 8, 43, 106, 142, 106, 43, 8, 1, 1, 9, 57, 169, 286, 286, 169, 57, 9, 1, 1, 10, 73, 253, 520, 659, 520, 253, 73, 10, 1
Offset: 0

Views

Author

Paul Barry, Nov 16 2005

Keywords

Comments

T(2n,n) is A114198. Row sums are A114199. Row sums of inverse are 0^n.

Examples

			Triangle begins
  1;
  1,   1;
  1,   2,   1;
  1,   3,   3,   1;
  1,   4,   7,   4,   1;
  1,   5,  13,  13,   5,   1;
  1,   6,  21,  31,  21,   6,   1;
  1,   7,  31,  61,  61,  31,   7,   1;
  1,   8,  43, 106, 142, 106,  43,   8,   1;
		

Crossrefs

Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A114197, A162741, A228074.

Formula

As a number triangle, T(n,k) = Sum_{j=0..n-k} C(n-k, j)C(k, j)F(j);
As a number triangle, T(n,k) = Sum_{j=0..n} C(n-k, n-j)C(k, j-k)F(j-k);
As a number triangle, T(n,k) = Sum_{j=0..n} C(k, j)C(n-k, n-j)F(k-j) if k <= n, 0 otherwise.
As a square array, T(n,k) = Sum_{j=0..n} C(n, j)C(k, j)F(j);
As a square array, T(n,k) = Sum_{j=0..n+k} C(n, n+k-j)C(k, j-k)F(j-k);
Column k has g.f.: (Sum_{j=0..k} C(k, j)F(j+1)(x/(1-x))^j)*x^k/(1-x);
G.f.: -((x^2-x)*y-x+1)/((x^4+x^3-x^2)*y^2+(x^3-3*x^2+2*x)*y-x^2+2*x-1). - Vladimir Kruchinin, Jan 15 2018