cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114199 Row sums of a Pascal-Fibonacci triangle.

Original entry on oeis.org

1, 2, 4, 8, 17, 38, 87, 200, 458, 1044, 2373, 5388, 12233, 27782, 63112, 143392, 325805, 740266, 1681935, 3821412, 8682310, 19726316, 44818473, 101828344, 231355953, 525645354, 1194276812, 2713420728, 6164945513, 14006877390
Offset: 0

Views

Author

Paul Barry, Nov 16 2005

Keywords

Comments

Binomial transform of double Fibonacci sequence A103609(n+2). Row sums of A114197.

Crossrefs

Programs

  • Magma
    [n le 4 select 2^(n-1) else 4*Self(n-1) -5*Self(n-2) +2*Self(n-3) +Self(n-4): n in [1..30]]; // G. C. Greubel, Oct 23 2024
    
  • Mathematica
    LinearRecurrence[{4,-5,2,1},{1,2,4,8},30] (* Harvey P. Dale, Dec 07 2015 *)
  • SageMath
    @CachedFunction # a = A114199
    def a(n): return 2^n if n<4 else 4*a(n-1) -5*a(n-2) +2*a(n-3) +a(n-4)
    [a(n) for n in range(71)] # G. C. Greubel, Oct 23 2024

Formula

G.f.: (1-x)^2/(1-4*x+5*x^2-2*x^3-x^4).
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n-k, j)*C(k, j)*Fibonacci(j).
a(n) = Sum_{k=0..n} C(n, k)*Fibonacci(floor((k+2)/2)).