A114199 Row sums of a Pascal-Fibonacci triangle.
1, 2, 4, 8, 17, 38, 87, 200, 458, 1044, 2373, 5388, 12233, 27782, 63112, 143392, 325805, 740266, 1681935, 3821412, 8682310, 19726316, 44818473, 101828344, 231355953, 525645354, 1194276812, 2713420728, 6164945513, 14006877390
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..2806
- Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2,1).
Programs
-
Magma
[n le 4 select 2^(n-1) else 4*Self(n-1) -5*Self(n-2) +2*Self(n-3) +Self(n-4): n in [1..30]]; // G. C. Greubel, Oct 23 2024
-
Mathematica
LinearRecurrence[{4,-5,2,1},{1,2,4,8},30] (* Harvey P. Dale, Dec 07 2015 *)
-
SageMath
@CachedFunction # a = A114199 def a(n): return 2^n if n<4 else 4*a(n-1) -5*a(n-2) +2*a(n-3) +a(n-4) [a(n) for n in range(71)] # G. C. Greubel, Oct 23 2024
Formula
G.f.: (1-x)^2/(1-4*x+5*x^2-2*x^3-x^4).
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n-k, j)*C(k, j)*Fibonacci(j).
a(n) = Sum_{k=0..n} C(n, k)*Fibonacci(floor((k+2)/2)).
Comments