A114203 Row sums of a Pascal-Jacobsthal triangle.
1, 2, 4, 8, 18, 44, 110, 272, 662, 1596, 3838, 9240, 22286, 53812, 129974, 313888, 757878, 1829644, 4416910, 10662952, 25742302, 62147556, 150038438, 362226480, 874493446, 2111213372, 5096916094, 12305037368, 29706982638, 71719002644, 173145004310, 418009044032
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..2613
- Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2,2).
Programs
-
Mathematica
LinearRecurrence[{4,-5,2,2},{1,2,4,8},40] (* Harvey P. Dale, Jun 05 2012 *)
Formula
G.f.: (1-x)^2/((1 - 2*x - x^2)*(1 - 2*x + 2*x^2)).
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) + 2*a(n-4).
a(n) = Sum_{k=0..n} Sum_{i=0..n-k} C(n-k, i)*C(k, i)*J(i).
a(n) = Sum_{k=0..n} C(n, k)*J(floor((k+2)/2)), J(n) = A001045(n).
E.g.f.: exp(x)*(cos(x) + 2*cosh(sqrt(2)*x) + sin(x) + sqrt(2)*sinh(sqrt(2)*x))/3. - Stefano Spezia, May 29 2024
Comments