cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114203 Row sums of a Pascal-Jacobsthal triangle.

Original entry on oeis.org

1, 2, 4, 8, 18, 44, 110, 272, 662, 1596, 3838, 9240, 22286, 53812, 129974, 313888, 757878, 1829644, 4416910, 10662952, 25742302, 62147556, 150038438, 362226480, 874493446, 2111213372, 5096916094, 12305037368, 29706982638, 71719002644, 173145004310, 418009044032
Offset: 0

Views

Author

Paul Barry, Nov 16 2005

Keywords

Comments

Binomial transform of double Jacobsthal sequence 1,1,1,1,3,3,5,5,11,11,... Row sums of A114202.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-5,2,2},{1,2,4,8},40] (* Harvey P. Dale, Jun 05 2012 *)

Formula

G.f.: (1-x)^2/((1 - 2*x - x^2)*(1 - 2*x + 2*x^2)).
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) + 2*a(n-4).
a(n) = Sum_{k=0..n} Sum_{i=0..n-k} C(n-k, i)*C(k, i)*J(i).
a(n) = Sum_{k=0..n} C(n, k)*J(floor((k+2)/2)), J(n) = A001045(n).
E.g.f.: exp(x)*(cos(x) + 2*cosh(sqrt(2)*x) + sin(x) + sqrt(2)*sinh(sqrt(2)*x))/3. - Stefano Spezia, May 29 2024